Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
1
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
3 |
|
ax-icn |
|- _i e. CC |
4 |
|
picn |
|- _pi e. CC |
5 |
3 4
|
mulcli |
|- ( _i x. _pi ) e. CC |
6 |
|
efadd |
|- ( ( ( log ` A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) ) |
7 |
2 5 6
|
sylancl |
|- ( A e. RR+ -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) ) |
8 |
|
efipi |
|- ( exp ` ( _i x. _pi ) ) = -u 1 |
9 |
8
|
oveq2i |
|- ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) = ( ( exp ` ( log ` A ) ) x. -u 1 ) |
10 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
11 |
10
|
oveq1d |
|- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) x. -u 1 ) = ( A x. -u 1 ) ) |
12 |
9 11
|
eqtrid |
|- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. _pi ) ) ) = ( A x. -u 1 ) ) |
13 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
14 |
|
neg1cn |
|- -u 1 e. CC |
15 |
|
mulcom |
|- ( ( A e. CC /\ -u 1 e. CC ) -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
16 |
13 14 15
|
sylancl |
|- ( A e. RR+ -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
17 |
13
|
mulm1d |
|- ( A e. RR+ -> ( -u 1 x. A ) = -u A ) |
18 |
16 17
|
eqtrd |
|- ( A e. RR+ -> ( A x. -u 1 ) = -u A ) |
19 |
7 12 18
|
3eqtrd |
|- ( A e. RR+ -> ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) = -u A ) |
20 |
19
|
fveq2d |
|- ( A e. RR+ -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( log ` -u A ) ) |
21 |
|
addcl |
|- ( ( ( log ` A ) e. CC /\ ( _i x. _pi ) e. CC ) -> ( ( log ` A ) + ( _i x. _pi ) ) e. CC ) |
22 |
2 5 21
|
sylancl |
|- ( A e. RR+ -> ( ( log ` A ) + ( _i x. _pi ) ) e. CC ) |
23 |
|
pipos |
|- 0 < _pi |
24 |
|
pire |
|- _pi e. RR |
25 |
|
lt0neg2 |
|- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
26 |
24 25
|
ax-mp |
|- ( 0 < _pi <-> -u _pi < 0 ) |
27 |
23 26
|
mpbi |
|- -u _pi < 0 |
28 |
24
|
renegcli |
|- -u _pi e. RR |
29 |
|
0re |
|- 0 e. RR |
30 |
28 29 24
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
31 |
27 23 30
|
mp2an |
|- -u _pi < _pi |
32 |
|
crim |
|- ( ( ( log ` A ) e. RR /\ _pi e. RR ) -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) = _pi ) |
33 |
1 24 32
|
sylancl |
|- ( A e. RR+ -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) = _pi ) |
34 |
31 33
|
breqtrrid |
|- ( A e. RR+ -> -u _pi < ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) |
35 |
24
|
leidi |
|- _pi <_ _pi |
36 |
33 35
|
eqbrtrdi |
|- ( A e. RR+ -> ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) <_ _pi ) |
37 |
|
ellogrn |
|- ( ( ( log ` A ) + ( _i x. _pi ) ) e. ran log <-> ( ( ( log ` A ) + ( _i x. _pi ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) /\ ( Im ` ( ( log ` A ) + ( _i x. _pi ) ) ) <_ _pi ) ) |
38 |
22 34 36 37
|
syl3anbrc |
|- ( A e. RR+ -> ( ( log ` A ) + ( _i x. _pi ) ) e. ran log ) |
39 |
|
logef |
|- ( ( ( log ` A ) + ( _i x. _pi ) ) e. ran log -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |
40 |
38 39
|
syl |
|- ( A e. RR+ -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. _pi ) ) ) ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |
41 |
20 40
|
eqtr3d |
|- ( A e. RR+ -> ( log ` -u A ) = ( ( log ` A ) + ( _i x. _pi ) ) ) |