| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore |  |-  ( y e. ( 1 (,) +oo ) -> y e. RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR ) | 
						
							| 3 |  | 1rp |  |-  1 e. RR+ | 
						
							| 4 | 3 | a1i |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 5 |  | 1red |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 6 |  | eliooord |  |-  ( y e. ( 1 (,) +oo ) -> ( 1 < y /\ y < +oo ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( 1 < y /\ y < +oo ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 < y ) | 
						
							| 9 | 5 2 8 | ltled |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> 1 <_ y ) | 
						
							| 10 | 2 4 9 | rpgecld |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> y e. RR+ ) | 
						
							| 11 | 10 | ex |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) -> y e. RR+ ) ) | 
						
							| 12 | 11 | ssrdv |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 13 |  | fveq2 |  |-  ( x = y -> ( log ` x ) = ( log ` y ) ) | 
						
							| 14 | 13 | cbvmptv |  |-  ( x e. RR+ |-> ( log ` x ) ) = ( y e. RR+ |-> ( log ` y ) ) | 
						
							| 15 | 14 | eleq1i |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) <-> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) | 
						
							| 16 | 15 | biimpi |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. RR+ |-> ( log ` y ) ) e. O(1) ) | 
						
							| 17 | 12 16 | o1res2 |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) | 
						
							| 18 |  | 1red |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR ) | 
						
							| 19 | 18 | rexrd |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 e. RR* ) | 
						
							| 20 | 18 | renepnfd |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> 1 =/= +oo ) | 
						
							| 21 |  | ioopnfsup |  |-  ( ( 1 e. RR* /\ 1 =/= +oo ) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) | 
						
							| 22 | 19 20 21 | syl2anc |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> sup ( ( 1 (,) +oo ) , RR* , < ) = +oo ) | 
						
							| 23 |  | divlogrlim |  |-  ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 | 
						
							| 24 | 23 | a1i |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> ( y e. ( 1 (,) +oo ) |-> ( 1 / ( log ` y ) ) ) ~~>r 0 ) | 
						
							| 25 | 2 8 | rplogcld |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. RR+ ) | 
						
							| 26 | 25 | rpcnd |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) e. CC ) | 
						
							| 27 | 25 | rpne0d |  |-  ( ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) /\ y e. ( 1 (,) +oo ) ) -> ( log ` y ) =/= 0 ) | 
						
							| 28 | 22 24 26 27 | rlimno1 |  |-  ( ( x e. RR+ |-> ( log ` x ) ) e. O(1) -> -. ( y e. ( 1 (,) +oo ) |-> ( log ` y ) ) e. O(1) ) | 
						
							| 29 | 17 28 | pm2.65i |  |-  -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |