Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logrncl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 2 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 3 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
| 4 | 2 3 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
| 5 | 4 | ffvelcdmi | |- ( A e. ( CC \ { 0 } ) -> ( log ` A ) e. ran log ) |
| 6 | 1 5 | sylbir | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |