Metamath Proof Explorer


Theorem logrncl

Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logrncl
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) )
2 logf1o
 |-  log : ( CC \ { 0 } ) -1-1-onto-> ran log
3 f1of
 |-  ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log )
4 2 3 ax-mp
 |-  log : ( CC \ { 0 } ) --> ran log
5 4 ffvelrni
 |-  ( A e. ( CC \ { 0 } ) -> ( log ` A ) e. ran log )
6 1 5 sylbir
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log )