Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | logrncl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
2 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
3 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
4 | 2 3 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
5 | 4 | ffvelrni | |- ( A e. ( CC \ { 0 } ) -> ( log ` A ) e. ran log ) |
6 | 1 5 | sylbir | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |