Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
1
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
|
divrec2 |
|- ( ( ( log ` A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
6 |
3 4 5
|
mp3an23 |
|- ( ( log ` A ) e. CC -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
7 |
2 6
|
syl |
|- ( A e. RR+ -> ( ( log ` A ) / 2 ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
8 |
|
halfre |
|- ( 1 / 2 ) e. RR |
9 |
|
logcxp |
|- ( ( A e. RR+ /\ ( 1 / 2 ) e. RR ) -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
10 |
8 9
|
mpan2 |
|- ( A e. RR+ -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( ( 1 / 2 ) x. ( log ` A ) ) ) |
11 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
12 |
|
cxpsqrt |
|- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
13 |
11 12
|
syl |
|- ( A e. RR+ -> ( A ^c ( 1 / 2 ) ) = ( sqrt ` A ) ) |
14 |
13
|
fveq2d |
|- ( A e. RR+ -> ( log ` ( A ^c ( 1 / 2 ) ) ) = ( log ` ( sqrt ` A ) ) ) |
15 |
7 10 14
|
3eqtr2rd |
|- ( A e. RR+ -> ( log ` ( sqrt ` A ) ) = ( ( log ` A ) / 2 ) ) |