| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsfi |
|- ( N e. NN -> { x e. NN | x || N } e. Fin ) |
| 2 |
|
fzfid |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( 1 ... d ) e. Fin ) |
| 3 |
|
elrabi |
|- ( d e. { x e. NN | x || N } -> d e. NN ) |
| 4 |
3
|
adantl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. NN ) |
| 5 |
|
dvdsssfz1 |
|- ( d e. NN -> { x e. NN | x || d } C_ ( 1 ... d ) ) |
| 6 |
4 5
|
syl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } C_ ( 1 ... d ) ) |
| 7 |
2 6
|
ssfid |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } e. Fin ) |
| 8 |
|
elrabi |
|- ( u e. { x e. NN | x || d } -> u e. NN ) |
| 9 |
8
|
ad2antll |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u e. NN ) |
| 10 |
|
vmacl |
|- ( u e. NN -> ( Lam ` u ) e. RR ) |
| 11 |
9 10
|
syl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` u ) e. RR ) |
| 12 |
|
breq1 |
|- ( x = u -> ( x || d <-> u || d ) ) |
| 13 |
12
|
elrab |
|- ( u e. { x e. NN | x || d } <-> ( u e. NN /\ u || d ) ) |
| 14 |
13
|
simprbi |
|- ( u e. { x e. NN | x || d } -> u || d ) |
| 15 |
14
|
ad2antll |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u || d ) |
| 16 |
3
|
ad2antrl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> d e. NN ) |
| 17 |
|
nndivdvds |
|- ( ( d e. NN /\ u e. NN ) -> ( u || d <-> ( d / u ) e. NN ) ) |
| 18 |
16 9 17
|
syl2anc |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( u || d <-> ( d / u ) e. NN ) ) |
| 19 |
15 18
|
mpbid |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( d / u ) e. NN ) |
| 20 |
|
vmacl |
|- ( ( d / u ) e. NN -> ( Lam ` ( d / u ) ) e. RR ) |
| 21 |
19 20
|
syl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` ( d / u ) ) e. RR ) |
| 22 |
11 21
|
remulcld |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
| 24 |
23
|
anassrs |
|- ( ( ( N e. NN /\ d e. { x e. NN | x || N } ) /\ u e. { x e. NN | x || d } ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
| 25 |
7 24
|
fsumcl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
| 26 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
| 27 |
4 26
|
syl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( Lam ` d ) e. RR ) |
| 28 |
4
|
nnrpd |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. RR+ ) |
| 29 |
28
|
relogcld |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( log ` d ) e. RR ) |
| 30 |
27 29
|
remulcld |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. RR ) |
| 31 |
30
|
recnd |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) |
| 32 |
1 25 31
|
fsumadd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
| 33 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 34 |
|
fvoveq1 |
|- ( d = ( u x. k ) -> ( Lam ` ( d / u ) ) = ( Lam ` ( ( u x. k ) / u ) ) ) |
| 35 |
34
|
oveq2d |
|- ( d = ( u x. k ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
| 36 |
33 35 23
|
fsumdvdscom |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
| 37 |
|
ssrab2 |
|- { x e. NN | x || ( N / u ) } C_ NN |
| 38 |
|
simpr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. { x e. NN | x || ( N / u ) } ) |
| 39 |
37 38
|
sselid |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. NN ) |
| 40 |
39
|
nncnd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. CC ) |
| 41 |
|
ssrab2 |
|- { x e. NN | x || N } C_ NN |
| 42 |
|
simpr |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. { x e. NN | x || N } ) |
| 43 |
41 42
|
sselid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. NN ) |
| 44 |
43
|
nncnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. CC ) |
| 45 |
44
|
adantr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u e. CC ) |
| 46 |
43
|
nnne0d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u =/= 0 ) |
| 47 |
46
|
adantr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u =/= 0 ) |
| 48 |
40 45 47
|
divcan3d |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( ( u x. k ) / u ) = k ) |
| 49 |
48
|
fveq2d |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) = ( Lam ` k ) ) |
| 50 |
49
|
sumeq2dv |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) ) |
| 51 |
|
dvdsdivcl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. { x e. NN | x || N } ) |
| 52 |
41 51
|
sselid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. NN ) |
| 53 |
|
vmasum |
|- ( ( N / u ) e. NN -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) |
| 54 |
52 53
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) |
| 55 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 56 |
55
|
adantr |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> N e. RR+ ) |
| 57 |
43
|
nnrpd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. RR+ ) |
| 58 |
56 57
|
relogdivd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` ( N / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) |
| 59 |
50 54 58
|
3eqtrd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) ) |
| 61 |
|
fzfid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( 1 ... ( N / u ) ) e. Fin ) |
| 62 |
|
dvdsssfz1 |
|- ( ( N / u ) e. NN -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) |
| 63 |
52 62
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) |
| 64 |
61 63
|
ssfid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } e. Fin ) |
| 65 |
43 10
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. RR ) |
| 66 |
65
|
recnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. CC ) |
| 67 |
|
vmacl |
|- ( k e. NN -> ( Lam ` k ) e. RR ) |
| 68 |
39 67
|
syl |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. RR ) |
| 69 |
68
|
recnd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. CC ) |
| 70 |
49 69
|
eqeltrd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) e. CC ) |
| 71 |
64 66 70
|
fsummulc2 |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
| 72 |
|
relogcl |
|- ( N e. RR+ -> ( log ` N ) e. RR ) |
| 73 |
72
|
recnd |
|- ( N e. RR+ -> ( log ` N ) e. CC ) |
| 74 |
56 73
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` N ) e. CC ) |
| 75 |
57
|
relogcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. RR ) |
| 76 |
75
|
recnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. CC ) |
| 77 |
66 74 76
|
subdid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
| 78 |
60 71 77
|
3eqtr3d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
| 79 |
78
|
sumeq2dv |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
| 80 |
66 74
|
mulcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` N ) ) e. CC ) |
| 81 |
66 76
|
mulcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` u ) ) e. CC ) |
| 82 |
1 80 81
|
fsumsub |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
| 83 |
55 73
|
syl |
|- ( N e. NN -> ( log ` N ) e. CC ) |
| 84 |
83
|
sqvald |
|- ( N e. NN -> ( ( log ` N ) ^ 2 ) = ( ( log ` N ) x. ( log ` N ) ) ) |
| 85 |
|
vmasum |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( Lam ` u ) = ( log ` N ) ) |
| 86 |
85
|
oveq1d |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) x. ( log ` N ) ) ) |
| 87 |
1 83 66
|
fsummulc1 |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) ) |
| 88 |
84 86 87
|
3eqtr2rd |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) ^ 2 ) ) |
| 89 |
|
fveq2 |
|- ( u = d -> ( Lam ` u ) = ( Lam ` d ) ) |
| 90 |
|
fveq2 |
|- ( u = d -> ( log ` u ) = ( log ` d ) ) |
| 91 |
89 90
|
oveq12d |
|- ( u = d -> ( ( Lam ` u ) x. ( log ` u ) ) = ( ( Lam ` d ) x. ( log ` d ) ) ) |
| 92 |
91
|
cbvsumv |
|- sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) |
| 93 |
92
|
a1i |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) |
| 94 |
88 93
|
oveq12d |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
| 95 |
82 94
|
eqtrd |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
| 96 |
36 79 95
|
3eqtrd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
| 97 |
96
|
oveq1d |
|- ( N e. NN -> ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
| 98 |
83
|
sqcld |
|- ( N e. NN -> ( ( log ` N ) ^ 2 ) e. CC ) |
| 99 |
1 31
|
fsumcl |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) |
| 100 |
98 99
|
npcand |
|- ( N e. NN -> ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) |
| 101 |
32 97 100
|
3eqtrd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) |