Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
2 |
|
dvdsssfz1 |
|- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
3 |
1 2
|
ssfid |
|- ( N e. NN -> { x e. NN | x || N } e. Fin ) |
4 |
|
fzfid |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( 1 ... d ) e. Fin ) |
5 |
|
elrabi |
|- ( d e. { x e. NN | x || N } -> d e. NN ) |
6 |
5
|
adantl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. NN ) |
7 |
|
dvdsssfz1 |
|- ( d e. NN -> { x e. NN | x || d } C_ ( 1 ... d ) ) |
8 |
6 7
|
syl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } C_ ( 1 ... d ) ) |
9 |
4 8
|
ssfid |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } e. Fin ) |
10 |
|
elrabi |
|- ( u e. { x e. NN | x || d } -> u e. NN ) |
11 |
10
|
ad2antll |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u e. NN ) |
12 |
|
vmacl |
|- ( u e. NN -> ( Lam ` u ) e. RR ) |
13 |
11 12
|
syl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` u ) e. RR ) |
14 |
|
breq1 |
|- ( x = u -> ( x || d <-> u || d ) ) |
15 |
14
|
elrab |
|- ( u e. { x e. NN | x || d } <-> ( u e. NN /\ u || d ) ) |
16 |
15
|
simprbi |
|- ( u e. { x e. NN | x || d } -> u || d ) |
17 |
16
|
ad2antll |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u || d ) |
18 |
5
|
ad2antrl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> d e. NN ) |
19 |
|
nndivdvds |
|- ( ( d e. NN /\ u e. NN ) -> ( u || d <-> ( d / u ) e. NN ) ) |
20 |
18 11 19
|
syl2anc |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( u || d <-> ( d / u ) e. NN ) ) |
21 |
17 20
|
mpbid |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( d / u ) e. NN ) |
22 |
|
vmacl |
|- ( ( d / u ) e. NN -> ( Lam ` ( d / u ) ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` ( d / u ) ) e. RR ) |
24 |
13 23
|
remulcld |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. RR ) |
25 |
24
|
recnd |
|- ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
26 |
25
|
anassrs |
|- ( ( ( N e. NN /\ d e. { x e. NN | x || N } ) /\ u e. { x e. NN | x || d } ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
27 |
9 26
|
fsumcl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) |
28 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
29 |
6 28
|
syl |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( Lam ` d ) e. RR ) |
30 |
6
|
nnrpd |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. RR+ ) |
31 |
30
|
relogcld |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( log ` d ) e. RR ) |
32 |
29 31
|
remulcld |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. RR ) |
33 |
32
|
recnd |
|- ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) |
34 |
3 27 33
|
fsumadd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
35 |
|
id |
|- ( N e. NN -> N e. NN ) |
36 |
|
fvoveq1 |
|- ( d = ( u x. k ) -> ( Lam ` ( d / u ) ) = ( Lam ` ( ( u x. k ) / u ) ) ) |
37 |
36
|
oveq2d |
|- ( d = ( u x. k ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
38 |
35 37 25
|
fsumdvdscom |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
39 |
|
ssrab2 |
|- { x e. NN | x || ( N / u ) } C_ NN |
40 |
|
simpr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. { x e. NN | x || ( N / u ) } ) |
41 |
39 40
|
sselid |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. NN ) |
42 |
41
|
nncnd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. CC ) |
43 |
|
ssrab2 |
|- { x e. NN | x || N } C_ NN |
44 |
|
simpr |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. { x e. NN | x || N } ) |
45 |
43 44
|
sselid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. NN ) |
46 |
45
|
nncnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. CC ) |
47 |
46
|
adantr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u e. CC ) |
48 |
45
|
nnne0d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u =/= 0 ) |
49 |
48
|
adantr |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u =/= 0 ) |
50 |
42 47 49
|
divcan3d |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( ( u x. k ) / u ) = k ) |
51 |
50
|
fveq2d |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) = ( Lam ` k ) ) |
52 |
51
|
sumeq2dv |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) ) |
53 |
|
dvdsdivcl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. { x e. NN | x || N } ) |
54 |
43 53
|
sselid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. NN ) |
55 |
|
vmasum |
|- ( ( N / u ) e. NN -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) |
56 |
54 55
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) |
57 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
58 |
57
|
adantr |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> N e. RR+ ) |
59 |
45
|
nnrpd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. RR+ ) |
60 |
58 59
|
relogdivd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` ( N / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) |
61 |
52 56 60
|
3eqtrd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) |
62 |
61
|
oveq2d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) ) |
63 |
|
fzfid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( 1 ... ( N / u ) ) e. Fin ) |
64 |
|
dvdsssfz1 |
|- ( ( N / u ) e. NN -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) |
65 |
54 64
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) |
66 |
63 65
|
ssfid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } e. Fin ) |
67 |
45 12
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. RR ) |
68 |
67
|
recnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. CC ) |
69 |
|
vmacl |
|- ( k e. NN -> ( Lam ` k ) e. RR ) |
70 |
41 69
|
syl |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. RR ) |
71 |
70
|
recnd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. CC ) |
72 |
51 71
|
eqeltrd |
|- ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) e. CC ) |
73 |
66 68 72
|
fsummulc2 |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) |
74 |
|
relogcl |
|- ( N e. RR+ -> ( log ` N ) e. RR ) |
75 |
74
|
recnd |
|- ( N e. RR+ -> ( log ` N ) e. CC ) |
76 |
58 75
|
syl |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` N ) e. CC ) |
77 |
59
|
relogcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. RR ) |
78 |
77
|
recnd |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. CC ) |
79 |
68 76 78
|
subdid |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
80 |
62 73 79
|
3eqtr3d |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
81 |
80
|
sumeq2dv |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
82 |
68 76
|
mulcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` N ) ) e. CC ) |
83 |
68 78
|
mulcld |
|- ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` u ) ) e. CC ) |
84 |
3 82 83
|
fsumsub |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) ) |
85 |
57 75
|
syl |
|- ( N e. NN -> ( log ` N ) e. CC ) |
86 |
85
|
sqvald |
|- ( N e. NN -> ( ( log ` N ) ^ 2 ) = ( ( log ` N ) x. ( log ` N ) ) ) |
87 |
|
vmasum |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( Lam ` u ) = ( log ` N ) ) |
88 |
87
|
oveq1d |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) x. ( log ` N ) ) ) |
89 |
3 85 68
|
fsummulc1 |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) ) |
90 |
86 88 89
|
3eqtr2rd |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) ^ 2 ) ) |
91 |
|
fveq2 |
|- ( u = d -> ( Lam ` u ) = ( Lam ` d ) ) |
92 |
|
fveq2 |
|- ( u = d -> ( log ` u ) = ( log ` d ) ) |
93 |
91 92
|
oveq12d |
|- ( u = d -> ( ( Lam ` u ) x. ( log ` u ) ) = ( ( Lam ` d ) x. ( log ` d ) ) ) |
94 |
93
|
cbvsumv |
|- sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) |
95 |
94
|
a1i |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) |
96 |
90 95
|
oveq12d |
|- ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
97 |
84 96
|
eqtrd |
|- ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
98 |
38 81 97
|
3eqtrd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
99 |
98
|
oveq1d |
|- ( N e. NN -> ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) |
100 |
85
|
sqcld |
|- ( N e. NN -> ( ( log ` N ) ^ 2 ) e. CC ) |
101 |
3 33
|
fsumcl |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) |
102 |
100 101
|
npcand |
|- ( N e. NN -> ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) |
103 |
34 99 102
|
3eqtrd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) |