| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsfi |
|- ( k e. NN -> { x e. NN | x || k } e. Fin ) |
| 2 |
|
ssrab2 |
|- { x e. NN | x || k } C_ NN |
| 3 |
|
simpr |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. { x e. NN | x || k } ) |
| 4 |
2 3
|
sselid |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. NN ) |
| 5 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
| 6 |
4 5
|
syl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` d ) e. RR ) |
| 7 |
|
dvdsdivcl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. { x e. NN | x || k } ) |
| 8 |
2 7
|
sselid |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. NN ) |
| 9 |
|
vmacl |
|- ( ( k / d ) e. NN -> ( Lam ` ( k / d ) ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` ( k / d ) ) e. RR ) |
| 11 |
6 10
|
remulcld |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) |
| 12 |
1 11
|
fsumrecl |
|- ( k e. NN -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) |
| 13 |
|
vmacl |
|- ( k e. NN -> ( Lam ` k ) e. RR ) |
| 14 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 15 |
14
|
relogcld |
|- ( k e. NN -> ( log ` k ) e. RR ) |
| 16 |
13 15
|
remulcld |
|- ( k e. NN -> ( ( Lam ` k ) x. ( log ` k ) ) e. RR ) |
| 17 |
12 16
|
readdcld |
|- ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. RR ) |
| 18 |
17
|
recnd |
|- ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) |
| 19 |
18
|
adantl |
|- ( ( N e. NN /\ k e. NN ) -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) |
| 20 |
19
|
fmpttd |
|- ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) : NN --> CC ) |
| 21 |
|
ssrab2 |
|- { x e. NN | x || n } C_ NN |
| 22 |
|
simpr |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. { x e. NN | x || n } ) |
| 23 |
21 22
|
sselid |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. NN ) |
| 24 |
|
breq2 |
|- ( k = m -> ( x || k <-> x || m ) ) |
| 25 |
24
|
rabbidv |
|- ( k = m -> { x e. NN | x || k } = { x e. NN | x || m } ) |
| 26 |
|
fvoveq1 |
|- ( k = m -> ( Lam ` ( k / d ) ) = ( Lam ` ( m / d ) ) ) |
| 27 |
26
|
oveq2d |
|- ( k = m -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
| 28 |
27
|
adantr |
|- ( ( k = m /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
| 29 |
25 28
|
sumeq12dv |
|- ( k = m -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
| 30 |
|
fveq2 |
|- ( k = m -> ( Lam ` k ) = ( Lam ` m ) ) |
| 31 |
|
fveq2 |
|- ( k = m -> ( log ` k ) = ( log ` m ) ) |
| 32 |
30 31
|
oveq12d |
|- ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) ) |
| 33 |
29 32
|
oveq12d |
|- ( k = m -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 34 |
|
eqid |
|- ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) |
| 35 |
|
ovex |
|- ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. _V |
| 36 |
33 34 35
|
fvmpt3i |
|- ( m e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 37 |
23 36
|
syl |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 38 |
37
|
sumeq2dv |
|- ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
| 39 |
|
logsqvma |
|- ( n e. NN -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) |
| 40 |
39
|
adantl |
|- ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) |
| 41 |
38 40
|
eqtr2d |
|- ( ( N e. NN /\ n e. NN ) -> ( ( log ` n ) ^ 2 ) = sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) |
| 42 |
41
|
mpteq2dva |
|- ( N e. NN -> ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) ) |
| 43 |
20 42
|
muinv |
|- ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ) |
| 44 |
43
|
fveq1d |
|- ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) ) |
| 45 |
|
breq2 |
|- ( k = N -> ( x || k <-> x || N ) ) |
| 46 |
45
|
rabbidv |
|- ( k = N -> { x e. NN | x || k } = { x e. NN | x || N } ) |
| 47 |
|
fvoveq1 |
|- ( k = N -> ( Lam ` ( k / d ) ) = ( Lam ` ( N / d ) ) ) |
| 48 |
47
|
oveq2d |
|- ( k = N -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
| 49 |
48
|
adantr |
|- ( ( k = N /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
| 50 |
46 49
|
sumeq12dv |
|- ( k = N -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
| 51 |
|
fveq2 |
|- ( k = N -> ( Lam ` k ) = ( Lam ` N ) ) |
| 52 |
|
fveq2 |
|- ( k = N -> ( log ` k ) = ( log ` N ) ) |
| 53 |
51 52
|
oveq12d |
|- ( k = N -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` N ) x. ( log ` N ) ) ) |
| 54 |
50 53
|
oveq12d |
|- ( k = N -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |
| 55 |
54 34 35
|
fvmpt3i |
|- ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |
| 56 |
|
fveq2 |
|- ( j = d -> ( mmu ` j ) = ( mmu ` d ) ) |
| 57 |
|
oveq2 |
|- ( j = d -> ( i / j ) = ( i / d ) ) |
| 58 |
57
|
fveq2d |
|- ( j = d -> ( log ` ( i / j ) ) = ( log ` ( i / d ) ) ) |
| 59 |
58
|
oveq1d |
|- ( j = d -> ( ( log ` ( i / j ) ) ^ 2 ) = ( ( log ` ( i / d ) ) ^ 2 ) ) |
| 60 |
56 59
|
oveq12d |
|- ( j = d -> ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) ) |
| 61 |
60
|
cbvsumv |
|- sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) |
| 62 |
|
breq2 |
|- ( i = N -> ( x || i <-> x || N ) ) |
| 63 |
62
|
rabbidv |
|- ( i = N -> { x e. NN | x || i } = { x e. NN | x || N } ) |
| 64 |
|
fvoveq1 |
|- ( i = N -> ( log ` ( i / d ) ) = ( log ` ( N / d ) ) ) |
| 65 |
64
|
oveq1d |
|- ( i = N -> ( ( log ` ( i / d ) ) ^ 2 ) = ( ( log ` ( N / d ) ) ^ 2 ) ) |
| 66 |
65
|
oveq2d |
|- ( i = N -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
| 67 |
66
|
adantr |
|- ( ( i = N /\ d e. { x e. NN | x || i } ) -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
| 68 |
63 67
|
sumeq12dv |
|- ( i = N -> sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
| 69 |
61 68
|
eqtrid |
|- ( i = N -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
| 70 |
|
ssrab2 |
|- { x e. NN | x || i } C_ NN |
| 71 |
|
dvdsdivcl |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. { x e. NN | x || i } ) |
| 72 |
70 71
|
sselid |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. NN ) |
| 73 |
|
fveq2 |
|- ( n = ( i / j ) -> ( log ` n ) = ( log ` ( i / j ) ) ) |
| 74 |
73
|
oveq1d |
|- ( n = ( i / j ) -> ( ( log ` n ) ^ 2 ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
| 75 |
|
eqid |
|- ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) |
| 76 |
|
ovex |
|- ( ( log ` n ) ^ 2 ) e. _V |
| 77 |
74 75 76
|
fvmpt3i |
|- ( ( i / j ) e. NN -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
| 78 |
72 77
|
syl |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
| 79 |
78
|
oveq2d |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
| 80 |
79
|
sumeq2dv |
|- ( i e. NN -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
| 81 |
80
|
mpteq2ia |
|- ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
| 82 |
|
sumex |
|- sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) e. _V |
| 83 |
69 81 82
|
fvmpt3i |
|- ( N e. NN -> ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
| 84 |
44 55 83
|
3eqtr3rd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |