Step |
Hyp |
Ref |
Expression |
1 |
|
logtayl2.s |
|- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1zzd |
|- ( A e. S -> 1 e. ZZ ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
4
|
a1i |
|- ( A e. S -> -u 1 e. CC ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
1
|
eleq2i |
|- ( A e. S <-> A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
8 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
9 |
|
1xr |
|- 1 e. RR* |
10 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) ) |
11 |
8 6 9 10
|
mp3an |
|- ( A e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) |
12 |
7 11
|
bitri |
|- ( A e. S <-> ( A e. CC /\ ( 1 ( abs o. - ) A ) < 1 ) ) |
13 |
12
|
simplbi |
|- ( A e. S -> A e. CC ) |
14 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
15 |
6 13 14
|
sylancr |
|- ( A e. S -> ( 1 - A ) e. CC ) |
16 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
17 |
16
|
cnmetdval |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 ( abs o. - ) A ) = ( abs ` ( 1 - A ) ) ) |
18 |
6 13 17
|
sylancr |
|- ( A e. S -> ( 1 ( abs o. - ) A ) = ( abs ` ( 1 - A ) ) ) |
19 |
12
|
simprbi |
|- ( A e. S -> ( 1 ( abs o. - ) A ) < 1 ) |
20 |
18 19
|
eqbrtrrd |
|- ( A e. S -> ( abs ` ( 1 - A ) ) < 1 ) |
21 |
|
logtayl |
|- ( ( ( 1 - A ) e. CC /\ ( abs ` ( 1 - A ) ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - ( 1 - A ) ) ) ) |
22 |
15 20 21
|
syl2anc |
|- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - ( 1 - A ) ) ) ) |
23 |
|
nncan |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - ( 1 - A ) ) = A ) |
24 |
6 13 23
|
sylancr |
|- ( A e. S -> ( 1 - ( 1 - A ) ) = A ) |
25 |
24
|
fveq2d |
|- ( A e. S -> ( log ` ( 1 - ( 1 - A ) ) ) = ( log ` A ) ) |
26 |
25
|
negeqd |
|- ( A e. S -> -u ( log ` ( 1 - ( 1 - A ) ) ) = -u ( log ` A ) ) |
27 |
22 26
|
breqtrd |
|- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ) ~~> -u ( log ` A ) ) |
28 |
|
oveq2 |
|- ( k = n -> ( ( 1 - A ) ^ k ) = ( ( 1 - A ) ^ n ) ) |
29 |
|
id |
|- ( k = n -> k = n ) |
30 |
28 29
|
oveq12d |
|- ( k = n -> ( ( ( 1 - A ) ^ k ) / k ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
31 |
|
eqid |
|- ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) = ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) |
32 |
|
ovex |
|- ( ( ( 1 - A ) ^ n ) / n ) e. _V |
33 |
30 31 32
|
fvmpt |
|- ( n e. NN -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
34 |
33
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) = ( ( ( 1 - A ) ^ n ) / n ) ) |
35 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
36 |
|
expcl |
|- ( ( ( 1 - A ) e. CC /\ n e. NN0 ) -> ( ( 1 - A ) ^ n ) e. CC ) |
37 |
15 35 36
|
syl2an |
|- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) e. CC ) |
38 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
39 |
38
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> n e. CC ) |
40 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
41 |
40
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> n =/= 0 ) |
42 |
37 39 41
|
divcld |
|- ( ( A e. S /\ n e. NN ) -> ( ( ( 1 - A ) ^ n ) / n ) e. CC ) |
43 |
34 42
|
eqeltrd |
|- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) e. CC ) |
44 |
37 39 41
|
divnegd |
|- ( ( A e. S /\ n e. NN ) -> -u ( ( ( 1 - A ) ^ n ) / n ) = ( -u ( ( 1 - A ) ^ n ) / n ) ) |
45 |
42
|
mulm1d |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) = -u ( ( ( 1 - A ) ^ n ) / n ) ) |
46 |
35
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> n e. NN0 ) |
47 |
|
expcl |
|- ( ( -u 1 e. CC /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
48 |
4 46 47
|
sylancr |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ n ) e. CC ) |
49 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
50 |
13 6 49
|
sylancl |
|- ( A e. S -> ( A - 1 ) e. CC ) |
51 |
|
expcl |
|- ( ( ( A - 1 ) e. CC /\ n e. NN0 ) -> ( ( A - 1 ) ^ n ) e. CC ) |
52 |
50 35 51
|
syl2an |
|- ( ( A e. S /\ n e. NN ) -> ( ( A - 1 ) ^ n ) e. CC ) |
53 |
48 52
|
mulneg1d |
|- ( ( A e. S /\ n e. NN ) -> ( -u ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) = -u ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
54 |
4
|
a1i |
|- ( ( A e. S /\ n e. NN ) -> -u 1 e. CC ) |
55 |
|
neg1ne0 |
|- -u 1 =/= 0 |
56 |
55
|
a1i |
|- ( ( A e. S /\ n e. NN ) -> -u 1 =/= 0 ) |
57 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
58 |
57
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> n e. ZZ ) |
59 |
54 56 58
|
expm1d |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) = ( ( -u 1 ^ n ) / -u 1 ) ) |
60 |
6
|
a1i |
|- ( ( A e. S /\ n e. NN ) -> 1 e. CC ) |
61 |
|
ax-1ne0 |
|- 1 =/= 0 |
62 |
61
|
a1i |
|- ( ( A e. S /\ n e. NN ) -> 1 =/= 0 ) |
63 |
48 60 62
|
divneg2d |
|- ( ( A e. S /\ n e. NN ) -> -u ( ( -u 1 ^ n ) / 1 ) = ( ( -u 1 ^ n ) / -u 1 ) ) |
64 |
48
|
div1d |
|- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ n ) / 1 ) = ( -u 1 ^ n ) ) |
65 |
64
|
negeqd |
|- ( ( A e. S /\ n e. NN ) -> -u ( ( -u 1 ^ n ) / 1 ) = -u ( -u 1 ^ n ) ) |
66 |
59 63 65
|
3eqtr2d |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) = -u ( -u 1 ^ n ) ) |
67 |
66
|
oveq1d |
|- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) = ( -u ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
68 |
50
|
mulm1d |
|- ( A e. S -> ( -u 1 x. ( A - 1 ) ) = -u ( A - 1 ) ) |
69 |
|
negsubdi2 |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) |
70 |
13 6 69
|
sylancl |
|- ( A e. S -> -u ( A - 1 ) = ( 1 - A ) ) |
71 |
68 70
|
eqtr2d |
|- ( A e. S -> ( 1 - A ) = ( -u 1 x. ( A - 1 ) ) ) |
72 |
71
|
oveq1d |
|- ( A e. S -> ( ( 1 - A ) ^ n ) = ( ( -u 1 x. ( A - 1 ) ) ^ n ) ) |
73 |
72
|
adantr |
|- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) = ( ( -u 1 x. ( A - 1 ) ) ^ n ) ) |
74 |
|
mulexp |
|- ( ( -u 1 e. CC /\ ( A - 1 ) e. CC /\ n e. NN0 ) -> ( ( -u 1 x. ( A - 1 ) ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
75 |
4 50 35 74
|
mp3an3an |
|- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 x. ( A - 1 ) ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
76 |
73 75
|
eqtrd |
|- ( ( A e. S /\ n e. NN ) -> ( ( 1 - A ) ^ n ) = ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
77 |
76
|
negeqd |
|- ( ( A e. S /\ n e. NN ) -> -u ( ( 1 - A ) ^ n ) = -u ( ( -u 1 ^ n ) x. ( ( A - 1 ) ^ n ) ) ) |
78 |
53 67 77
|
3eqtr4d |
|- ( ( A e. S /\ n e. NN ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) = -u ( ( 1 - A ) ^ n ) ) |
79 |
78
|
oveq1d |
|- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) = ( -u ( ( 1 - A ) ^ n ) / n ) ) |
80 |
44 45 79
|
3eqtr4d |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) ) |
81 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
82 |
81
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> ( n - 1 ) e. NN0 ) |
83 |
|
expcl |
|- ( ( -u 1 e. CC /\ ( n - 1 ) e. NN0 ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
84 |
4 82 83
|
sylancr |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) |
85 |
84 52 39 41
|
div23d |
|- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) x. ( ( A - 1 ) ^ n ) ) / n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
86 |
80 85
|
eqtr2d |
|- ( ( A e. S /\ n e. NN ) -> ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) = ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) ) |
87 |
|
oveq1 |
|- ( k = n -> ( k - 1 ) = ( n - 1 ) ) |
88 |
87
|
oveq2d |
|- ( k = n -> ( -u 1 ^ ( k - 1 ) ) = ( -u 1 ^ ( n - 1 ) ) ) |
89 |
88 29
|
oveq12d |
|- ( k = n -> ( ( -u 1 ^ ( k - 1 ) ) / k ) = ( ( -u 1 ^ ( n - 1 ) ) / n ) ) |
90 |
|
oveq2 |
|- ( k = n -> ( ( A - 1 ) ^ k ) = ( ( A - 1 ) ^ n ) ) |
91 |
89 90
|
oveq12d |
|- ( k = n -> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
92 |
|
eqid |
|- ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) = ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) |
93 |
|
ovex |
|- ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) e. _V |
94 |
91 92 93
|
fvmpt |
|- ( n e. NN -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
95 |
94
|
adantl |
|- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( ( ( -u 1 ^ ( n - 1 ) ) / n ) x. ( ( A - 1 ) ^ n ) ) ) |
96 |
34
|
oveq2d |
|- ( ( A e. S /\ n e. NN ) -> ( -u 1 x. ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) ) = ( -u 1 x. ( ( ( 1 - A ) ^ n ) / n ) ) ) |
97 |
86 95 96
|
3eqtr4d |
|- ( ( A e. S /\ n e. NN ) -> ( ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ` n ) = ( -u 1 x. ( ( k e. NN |-> ( ( ( 1 - A ) ^ k ) / k ) ) ` n ) ) ) |
98 |
2 3 5 27 43 97
|
isermulc2 |
|- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ) ~~> ( -u 1 x. -u ( log ` A ) ) ) |
99 |
1
|
dvlog2lem |
|- S C_ ( CC \ ( -oo (,] 0 ) ) |
100 |
99
|
sseli |
|- ( A e. S -> A e. ( CC \ ( -oo (,] 0 ) ) ) |
101 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
102 |
101
|
logdmn0 |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> A =/= 0 ) |
103 |
100 102
|
syl |
|- ( A e. S -> A =/= 0 ) |
104 |
13 103
|
logcld |
|- ( A e. S -> ( log ` A ) e. CC ) |
105 |
104
|
negcld |
|- ( A e. S -> -u ( log ` A ) e. CC ) |
106 |
105
|
mulm1d |
|- ( A e. S -> ( -u 1 x. -u ( log ` A ) ) = -u -u ( log ` A ) ) |
107 |
104
|
negnegd |
|- ( A e. S -> -u -u ( log ` A ) = ( log ` A ) ) |
108 |
106 107
|
eqtrd |
|- ( A e. S -> ( -u 1 x. -u ( log ` A ) ) = ( log ` A ) ) |
109 |
98 108
|
breqtrd |
|- ( A e. S -> seq 1 ( + , ( k e. NN |-> ( ( ( -u 1 ^ ( k - 1 ) ) / k ) x. ( ( A - 1 ) ^ k ) ) ) ) ~~> ( log ` A ) ) |