Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
2 |
|
1zzd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
3 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
4 |
|
id |
|- ( n = k -> n = k ) |
5 |
3 4
|
oveq12d |
|- ( n = k -> ( ( A ^ n ) / n ) = ( ( A ^ k ) / k ) ) |
6 |
|
eqid |
|- ( n e. NN |-> ( ( A ^ n ) / n ) ) = ( n e. NN |-> ( ( A ^ n ) / n ) ) |
7 |
|
ovex |
|- ( ( A ^ k ) / k ) e. _V |
8 |
5 6 7
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( A ^ n ) / n ) ) ` k ) = ( ( A ^ k ) / k ) ) |
9 |
8
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( A ^ n ) / n ) ) ` k ) = ( ( A ^ k ) / k ) ) |
10 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
11 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
12 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
13 |
10 11 12
|
syl2an |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
14 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
15 |
14
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. CC ) |
16 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
17 |
16
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k =/= 0 ) |
18 |
13 15 17
|
divcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( A ^ k ) / k ) e. CC ) |
19 |
|
logtayl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( A ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |
20 |
1 2 9 18 19
|
isumclim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( ( A ^ k ) / k ) = -u ( log ` ( 1 - A ) ) ) |