Step |
Hyp |
Ref |
Expression |
1 |
|
lppthon.i |
|- I = ( iEdg ` G ) |
2 |
1
|
lppthon |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( A ( PathsOn ` G ) A ) <" A A "> ) |
3 |
|
pthonispth |
|- ( <" J "> ( A ( PathsOn ` G ) A ) <" A A "> -> <" J "> ( Paths ` G ) <" A A "> ) |
4 |
2 3
|
syl |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( Paths ` G ) <" A A "> ) |
5 |
1
|
lpvtx |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |
6 |
|
s2fv1 |
|- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 1 ) = A ) |
7 |
|
s1len |
|- ( # ` <" J "> ) = 1 |
8 |
7
|
fveq2i |
|- ( <" A A "> ` ( # ` <" J "> ) ) = ( <" A A "> ` 1 ) |
9 |
8
|
a1i |
|- ( A e. ( Vtx ` G ) -> ( <" A A "> ` ( # ` <" J "> ) ) = ( <" A A "> ` 1 ) ) |
10 |
|
s2fv0 |
|- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 0 ) = A ) |
11 |
6 9 10
|
3eqtr4rd |
|- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) |
12 |
5 11
|
syl |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) |
13 |
|
iscycl |
|- ( <" J "> ( Cycles ` G ) <" A A "> <-> ( <" J "> ( Paths ` G ) <" A A "> /\ ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) ) |
14 |
4 12 13
|
sylanbrc |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( Cycles ` G ) <" A A "> ) |