| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p |  |-  P = ( LPIdeal ` R ) | 
						
							| 2 |  | lpi0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 3 2 | ring0cl |  |-  ( R e. Ring -> .0. e. ( Base ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 6 | 5 2 | rsp0 |  |-  ( R e. Ring -> ( ( RSpan ` R ) ` { .0. } ) = { .0. } ) | 
						
							| 7 | 6 | eqcomd |  |-  ( R e. Ring -> { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) | 
						
							| 8 |  | sneq |  |-  ( g = .0. -> { g } = { .0. } ) | 
						
							| 9 | 8 | fveq2d |  |-  ( g = .0. -> ( ( RSpan ` R ) ` { g } ) = ( ( RSpan ` R ) ` { .0. } ) ) | 
						
							| 10 | 9 | rspceeqv |  |-  ( ( .0. e. ( Base ` R ) /\ { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) | 
						
							| 11 | 4 7 10 | syl2anc |  |-  ( R e. Ring -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) | 
						
							| 12 | 1 5 3 | islpidl |  |-  ( R e. Ring -> ( { .0. } e. P <-> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) ) | 
						
							| 13 | 11 12 | mpbird |  |-  ( R e. Ring -> { .0. } e. P ) |