| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p |  |-  P = ( LPIdeal ` R ) | 
						
							| 2 |  | lpi1.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 4 | 2 3 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 5 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 6 | 5 2 3 | rsp1 |  |-  ( R e. Ring -> ( ( RSpan ` R ) ` { ( 1r ` R ) } ) = B ) | 
						
							| 7 | 6 | eqcomd |  |-  ( R e. Ring -> B = ( ( RSpan ` R ) ` { ( 1r ` R ) } ) ) | 
						
							| 8 |  | sneq |  |-  ( g = ( 1r ` R ) -> { g } = { ( 1r ` R ) } ) | 
						
							| 9 | 8 | fveq2d |  |-  ( g = ( 1r ` R ) -> ( ( RSpan ` R ) ` { g } ) = ( ( RSpan ` R ) ` { ( 1r ` R ) } ) ) | 
						
							| 10 | 9 | rspceeqv |  |-  ( ( ( 1r ` R ) e. B /\ B = ( ( RSpan ` R ) ` { ( 1r ` R ) } ) ) -> E. g e. B B = ( ( RSpan ` R ) ` { g } ) ) | 
						
							| 11 | 4 7 10 | syl2anc |  |-  ( R e. Ring -> E. g e. B B = ( ( RSpan ` R ) ` { g } ) ) | 
						
							| 12 | 1 5 2 | islpidl |  |-  ( R e. Ring -> ( B e. P <-> E. g e. B B = ( ( RSpan ` R ) ` { g } ) ) ) | 
						
							| 13 | 11 12 | mpbird |  |-  ( R e. Ring -> B e. P ) |