Step |
Hyp |
Ref |
Expression |
1 |
|
lpirring |
|- ( R e. LPIR -> R e. Ring ) |
2 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
3 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
2 3 4
|
islpidl |
|- ( R e. Ring -> ( a e. ( LPIdeal ` R ) <-> E. c e. ( Base ` R ) a = ( ( RSpan ` R ) ` { c } ) ) ) |
6 |
1 5
|
syl |
|- ( R e. LPIR -> ( a e. ( LPIdeal ` R ) <-> E. c e. ( Base ` R ) a = ( ( RSpan ` R ) ` { c } ) ) ) |
7 |
6
|
biimpa |
|- ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) -> E. c e. ( Base ` R ) a = ( ( RSpan ` R ) ` { c } ) ) |
8 |
|
snelpwi |
|- ( c e. ( Base ` R ) -> { c } e. ~P ( Base ` R ) ) |
9 |
8
|
adantl |
|- ( ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) /\ c e. ( Base ` R ) ) -> { c } e. ~P ( Base ` R ) ) |
10 |
|
snfi |
|- { c } e. Fin |
11 |
10
|
a1i |
|- ( ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) /\ c e. ( Base ` R ) ) -> { c } e. Fin ) |
12 |
9 11
|
elind |
|- ( ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) /\ c e. ( Base ` R ) ) -> { c } e. ( ~P ( Base ` R ) i^i Fin ) ) |
13 |
|
eqid |
|- ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` { c } ) |
14 |
|
fveq2 |
|- ( b = { c } -> ( ( RSpan ` R ) ` b ) = ( ( RSpan ` R ) ` { c } ) ) |
15 |
14
|
rspceeqv |
|- ( ( { c } e. ( ~P ( Base ` R ) i^i Fin ) /\ ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` { c } ) ) -> E. b e. ( ~P ( Base ` R ) i^i Fin ) ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` b ) ) |
16 |
12 13 15
|
sylancl |
|- ( ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) /\ c e. ( Base ` R ) ) -> E. b e. ( ~P ( Base ` R ) i^i Fin ) ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` b ) ) |
17 |
|
eqeq1 |
|- ( a = ( ( RSpan ` R ) ` { c } ) -> ( a = ( ( RSpan ` R ) ` b ) <-> ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` b ) ) ) |
18 |
17
|
rexbidv |
|- ( a = ( ( RSpan ` R ) ` { c } ) -> ( E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) <-> E. b e. ( ~P ( Base ` R ) i^i Fin ) ( ( RSpan ` R ) ` { c } ) = ( ( RSpan ` R ) ` b ) ) ) |
19 |
16 18
|
syl5ibrcom |
|- ( ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) /\ c e. ( Base ` R ) ) -> ( a = ( ( RSpan ` R ) ` { c } ) -> E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) ) |
20 |
19
|
rexlimdva |
|- ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) -> ( E. c e. ( Base ` R ) a = ( ( RSpan ` R ) ` { c } ) -> E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) ) |
21 |
7 20
|
mpd |
|- ( ( R e. LPIR /\ a e. ( LPIdeal ` R ) ) -> E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) |
22 |
21
|
ralrimiva |
|- ( R e. LPIR -> A. a e. ( LPIdeal ` R ) E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) |
23 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
24 |
2 23
|
islpir |
|- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) |
25 |
24
|
simprbi |
|- ( R e. LPIR -> ( LIdeal ` R ) = ( LPIdeal ` R ) ) |
26 |
25
|
raleqdv |
|- ( R e. LPIR -> ( A. a e. ( LIdeal ` R ) E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) <-> A. a e. ( LPIdeal ` R ) E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) ) |
27 |
22 26
|
mpbird |
|- ( R e. LPIR -> A. a e. ( LIdeal ` R ) E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) |
28 |
4 23 3
|
islnr2 |
|- ( R e. LNoeR <-> ( R e. Ring /\ A. a e. ( LIdeal ` R ) E. b e. ( ~P ( Base ` R ) i^i Fin ) a = ( ( RSpan ` R ) ` b ) ) ) |
29 |
1 27 28
|
sylanbrc |
|- ( R e. LPIR -> R e. LNoeR ) |