Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lpirring | |- ( R e. LPIR -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
|
2 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
3 | 1 2 | islpir | |- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) |
4 | 3 | simplbi | |- ( R e. LPIR -> R e. Ring ) |