Step |
Hyp |
Ref |
Expression |
1 |
|
lpival.p |
|- P = ( LPIdeal ` R ) |
2 |
|
lpiss.u |
|- U = ( LIdeal ` R ) |
3 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
1 3 4
|
islpidl |
|- ( R e. Ring -> ( a e. P <-> E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) ) ) |
6 |
|
snssi |
|- ( g e. ( Base ` R ) -> { g } C_ ( Base ` R ) ) |
7 |
3 4 2
|
rspcl |
|- ( ( R e. Ring /\ { g } C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) |
8 |
6 7
|
sylan2 |
|- ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) |
9 |
|
eleq1 |
|- ( a = ( ( RSpan ` R ) ` { g } ) -> ( a e. U <-> ( ( RSpan ` R ) ` { g } ) e. U ) ) |
10 |
8 9
|
syl5ibrcom |
|- ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) |
11 |
10
|
rexlimdva |
|- ( R e. Ring -> ( E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) |
12 |
5 11
|
sylbid |
|- ( R e. Ring -> ( a e. P -> a e. U ) ) |
13 |
12
|
ssrdv |
|- ( R e. Ring -> P C_ U ) |