| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p |  |-  P = ( LPIdeal ` R ) | 
						
							| 2 |  | lpiss.u |  |-  U = ( LIdeal ` R ) | 
						
							| 3 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 | 1 3 4 | islpidl |  |-  ( R e. Ring -> ( a e. P <-> E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) ) ) | 
						
							| 6 |  | snssi |  |-  ( g e. ( Base ` R ) -> { g } C_ ( Base ` R ) ) | 
						
							| 7 | 3 4 2 | rspcl |  |-  ( ( R e. Ring /\ { g } C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) | 
						
							| 8 | 6 7 | sylan2 |  |-  ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) | 
						
							| 9 |  | eleq1 |  |-  ( a = ( ( RSpan ` R ) ` { g } ) -> ( a e. U <-> ( ( RSpan ` R ) ` { g } ) e. U ) ) | 
						
							| 10 | 8 9 | syl5ibrcom |  |-  ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) | 
						
							| 11 | 10 | rexlimdva |  |-  ( R e. Ring -> ( E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) | 
						
							| 12 | 5 11 | sylbid |  |-  ( R e. Ring -> ( a e. P -> a e. U ) ) | 
						
							| 13 | 12 | ssrdv |  |-  ( R e. Ring -> P C_ U ) |