| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p |  |-  P = ( LPIdeal ` R ) | 
						
							| 2 |  | lpival.k |  |-  K = ( RSpan ` R ) | 
						
							| 3 |  | lpival.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | fveq2 |  |-  ( r = R -> ( Base ` r ) = ( Base ` R ) ) | 
						
							| 5 |  | fveq2 |  |-  ( r = R -> ( RSpan ` r ) = ( RSpan ` R ) ) | 
						
							| 6 | 5 | fveq1d |  |-  ( r = R -> ( ( RSpan ` r ) ` { g } ) = ( ( RSpan ` R ) ` { g } ) ) | 
						
							| 7 | 6 | sneqd |  |-  ( r = R -> { ( ( RSpan ` r ) ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) | 
						
							| 8 | 4 7 | iuneq12d |  |-  ( r = R -> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) | 
						
							| 9 |  | df-lpidl |  |-  LPIdeal = ( r e. Ring |-> U_ g e. ( Base ` r ) { ( ( RSpan ` r ) ` { g } ) } ) | 
						
							| 10 |  | fvex |  |-  ( RSpan ` R ) e. _V | 
						
							| 11 | 10 | rnex |  |-  ran ( RSpan ` R ) e. _V | 
						
							| 12 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 13 | 11 12 | unex |  |-  ( ran ( RSpan ` R ) u. { (/) } ) e. _V | 
						
							| 14 |  | iunss |  |-  ( U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) <-> A. g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) | 
						
							| 15 |  | fvrn0 |  |-  ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) | 
						
							| 16 |  | snssi |  |-  ( ( ( RSpan ` R ) ` { g } ) e. ( ran ( RSpan ` R ) u. { (/) } ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) | 
						
							| 18 | 17 | a1i |  |-  ( g e. ( Base ` R ) -> { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) ) | 
						
							| 19 | 14 18 | mprgbir |  |-  U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } C_ ( ran ( RSpan ` R ) u. { (/) } ) | 
						
							| 20 | 13 19 | ssexi |  |-  U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } e. _V | 
						
							| 21 | 8 9 20 | fvmpt |  |-  ( R e. Ring -> ( LPIdeal ` R ) = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } ) | 
						
							| 22 |  | iuneq1 |  |-  ( B = ( Base ` R ) -> U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } ) | 
						
							| 23 | 3 22 | ax-mp |  |-  U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( K ` { g } ) } | 
						
							| 24 | 2 | fveq1i |  |-  ( K ` { g } ) = ( ( RSpan ` R ) ` { g } ) | 
						
							| 25 | 24 | sneqi |  |-  { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } | 
						
							| 26 | 25 | a1i |  |-  ( g e. ( Base ` R ) -> { ( K ` { g } ) } = { ( ( RSpan ` R ) ` { g } ) } ) | 
						
							| 27 | 26 | iuneq2i |  |-  U_ g e. ( Base ` R ) { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } | 
						
							| 28 | 23 27 | eqtri |  |-  U_ g e. B { ( K ` { g } ) } = U_ g e. ( Base ` R ) { ( ( RSpan ` R ) ` { g } ) } | 
						
							| 29 | 21 1 28 | 3eqtr4g |  |-  ( R e. Ring -> P = U_ g e. B { ( K ` { g } ) } ) |