| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplncvrlvol2.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | lplncvrlvol2.c |  |-  C = (  | 
						
							| 3 |  | lplncvrlvol2.p |  |-  P = ( LPlanes ` K ) | 
						
							| 4 |  | lplncvrlvol2.v |  |-  V = ( LVols ` K ) | 
						
							| 5 |  | simpr |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> X .<_ Y ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> K e. HL ) | 
						
							| 7 |  | simpl3 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> Y e. V ) | 
						
							| 8 | 3 4 | lvolnelpln |  |-  ( ( K e. HL /\ Y e. V ) -> -. Y e. P ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> -. Y e. P ) | 
						
							| 10 |  | simpl2 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> X e. P ) | 
						
							| 11 |  | eleq1 |  |-  ( X = Y -> ( X e. P <-> Y e. P ) ) | 
						
							| 12 | 10 11 | syl5ibcom |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> ( X = Y -> Y e. P ) ) | 
						
							| 13 | 12 | necon3bd |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> ( -. Y e. P -> X =/= Y ) ) | 
						
							| 14 | 9 13 | mpd |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> X =/= Y ) | 
						
							| 15 |  | eqid |  |-  ( lt ` K ) = ( lt ` K ) | 
						
							| 16 | 1 15 | pltval |  |-  ( ( K e. HL /\ X e. P /\ Y e. V ) -> ( X ( lt ` K ) Y <-> ( X .<_ Y /\ X =/= Y ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> ( X ( lt ` K ) Y <-> ( X .<_ Y /\ X =/= Y ) ) ) | 
						
							| 18 | 5 14 17 | mpbir2and |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> X ( lt ` K ) Y ) | 
						
							| 19 |  | simpl1 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> K e. HL ) | 
						
							| 20 |  | simpl2 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> X e. P ) | 
						
							| 21 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 22 | 21 3 | lplnbase |  |-  ( X e. P -> X e. ( Base ` K ) ) | 
						
							| 23 | 20 22 | syl |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> X e. ( Base ` K ) ) | 
						
							| 24 |  | simpl3 |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> Y e. V ) | 
						
							| 25 | 21 4 | lvolbase |  |-  ( Y e. V -> Y e. ( Base ` K ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> Y e. ( Base ` K ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> X ( lt ` K ) Y ) | 
						
							| 28 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 29 |  | eqid |  |-  ( Atoms ` K ) = ( Atoms ` K ) | 
						
							| 30 | 21 1 15 28 2 29 | hlrelat3 |  |-  ( ( ( K e. HL /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) /\ X ( lt ` K ) Y ) -> E. s e. ( Atoms ` K ) ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) | 
						
							| 31 | 19 23 26 27 30 | syl31anc |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> E. s e. ( Atoms ` K ) ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) | 
						
							| 32 | 21 1 28 29 4 | islvol2 |  |-  ( K e. HL -> ( Y e. V <-> ( Y e. ( Base ` K ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) E. w e. ( Atoms ` K ) ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) ) ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( K e. HL /\ X e. P ) -> ( Y e. V <-> ( Y e. ( Base ` K ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) E. w e. ( Atoms ` K ) ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) ) ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) | 
						
							| 35 | 21 1 28 29 3 | islpln2 |  |-  ( K e. HL -> ( X e. P <-> ( X e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) ) ) | 
						
							| 36 |  | simp3rl |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> X C ( X ( join ` K ) s ) ) | 
						
							| 37 |  | simp3rr |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( X ( join ` K ) s ) .<_ Y ) | 
						
							| 38 |  | simp133 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( X ( join ` K ) s ) = ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) ) | 
						
							| 40 |  | simp23 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) | 
						
							| 41 | 37 39 40 | 3brtr3d |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) .<_ ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) | 
						
							| 42 |  | simp11 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) | 
						
							| 43 |  | simp12 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> r e. ( Atoms ` K ) ) | 
						
							| 44 |  | simp3l |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> s e. ( Atoms ` K ) ) | 
						
							| 45 |  | simp21l |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> t e. ( Atoms ` K ) ) | 
						
							| 46 | 43 44 45 | 3jca |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) ) | 
						
							| 47 |  | simp21r |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> u e. ( Atoms ` K ) ) | 
						
							| 48 |  | simp22l |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> v e. ( Atoms ` K ) ) | 
						
							| 49 |  | simp22r |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> w e. ( Atoms ` K ) ) | 
						
							| 50 | 47 48 49 | 3jca |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) ) | 
						
							| 51 |  | simp131 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> p =/= q ) | 
						
							| 52 |  | simp132 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> -. r .<_ ( p ( join ` K ) q ) ) | 
						
							| 53 | 36 38 39 | 3brtr3d |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( ( p ( join ` K ) q ) ( join ` K ) r ) C ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) ) | 
						
							| 54 |  | simp111 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> K e. HL ) | 
						
							| 55 | 54 | hllatd |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> K e. Lat ) | 
						
							| 56 | 21 28 29 | hlatjcl |  |-  ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) | 
						
							| 57 | 42 56 | syl |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) | 
						
							| 58 | 21 29 | atbase |  |-  ( r e. ( Atoms ` K ) -> r e. ( Base ` K ) ) | 
						
							| 59 | 43 58 | syl |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> r e. ( Base ` K ) ) | 
						
							| 60 | 21 28 | latjcl |  |-  ( ( K e. Lat /\ ( p ( join ` K ) q ) e. ( Base ` K ) /\ r e. ( Base ` K ) ) -> ( ( p ( join ` K ) q ) ( join ` K ) r ) e. ( Base ` K ) ) | 
						
							| 61 | 55 57 59 60 | syl3anc |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( ( p ( join ` K ) q ) ( join ` K ) r ) e. ( Base ` K ) ) | 
						
							| 62 | 21 1 28 2 29 | cvr1 |  |-  ( ( K e. HL /\ ( ( p ( join ` K ) q ) ( join ` K ) r ) e. ( Base ` K ) /\ s e. ( Atoms ` K ) ) -> ( -. s .<_ ( ( p ( join ` K ) q ) ( join ` K ) r ) <-> ( ( p ( join ` K ) q ) ( join ` K ) r ) C ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) ) ) | 
						
							| 63 | 54 61 44 62 | syl3anc |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( -. s .<_ ( ( p ( join ` K ) q ) ( join ` K ) r ) <-> ( ( p ( join ` K ) q ) ( join ` K ) r ) C ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) ) ) | 
						
							| 64 | 53 63 | mpbird |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> -. s .<_ ( ( p ( join ` K ) q ) ( join ` K ) r ) ) | 
						
							| 65 | 1 28 29 | 4at2 |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ -. s .<_ ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) .<_ ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) <-> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) ) | 
						
							| 66 | 42 46 50 51 52 64 65 | syl33anc |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) .<_ ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) <-> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) ) | 
						
							| 67 | 41 66 | mpbid |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( ( ( p ( join ` K ) q ) ( join ` K ) r ) ( join ` K ) s ) = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) | 
						
							| 68 | 67 39 40 | 3eqtr4d |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> ( X ( join ` K ) s ) = Y ) | 
						
							| 69 | 36 68 | breqtrd |  |-  ( ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) /\ ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) ) -> X C Y ) | 
						
							| 70 | 69 | 3exp |  |-  ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> ( ( s e. ( Atoms ` K ) /\ ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) -> X C Y ) ) ) | 
						
							| 71 | 70 | exp4a |  |-  ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) /\ ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) | 
						
							| 72 | 71 | 3expd |  |-  ( ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ r e. ( Atoms ` K ) /\ ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) | 
						
							| 73 | 72 | rexlimdv3a |  |-  ( ( K e. HL /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( E. r e. ( Atoms ` K ) ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) | 
						
							| 74 | 73 | 3expib |  |-  ( K e. HL -> ( ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( E. r e. ( Atoms ` K ) ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) ) | 
						
							| 75 | 74 | rexlimdvv |  |-  ( K e. HL -> ( E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) | 
						
							| 76 | 75 | adantld |  |-  ( K e. HL -> ( ( X e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) ( p =/= q /\ -. r .<_ ( p ( join ` K ) q ) /\ X = ( ( p ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) | 
						
							| 77 | 35 76 | sylbid |  |-  ( K e. HL -> ( X e. P -> ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) ) ) | 
						
							| 78 | 77 | imp31 |  |-  ( ( ( K e. HL /\ X e. P ) /\ ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) | 
						
							| 79 | 34 78 | syl7 |  |-  ( ( ( K e. HL /\ X e. P ) /\ ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) ) -> ( ( v e. ( Atoms ` K ) /\ w e. ( Atoms ` K ) ) -> ( ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) ) | 
						
							| 80 | 79 | rexlimdvv |  |-  ( ( ( K e. HL /\ X e. P ) /\ ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) ) ) -> ( E. v e. ( Atoms ` K ) E. w e. ( Atoms ` K ) ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) | 
						
							| 81 | 80 | rexlimdvva |  |-  ( ( K e. HL /\ X e. P ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) E. w e. ( Atoms ` K ) ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) | 
						
							| 82 | 81 | adantld |  |-  ( ( K e. HL /\ X e. P ) -> ( ( Y e. ( Base ` K ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) E. w e. ( Atoms ` K ) ( ( t =/= u /\ -. v .<_ ( t ( join ` K ) u ) /\ -. w .<_ ( ( t ( join ` K ) u ) ( join ` K ) v ) ) /\ Y = ( ( ( t ( join ` K ) u ) ( join ` K ) v ) ( join ` K ) w ) ) ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) | 
						
							| 83 | 33 82 | sylbid |  |-  ( ( K e. HL /\ X e. P ) -> ( Y e. V -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) ) | 
						
							| 84 | 83 | 3impia |  |-  ( ( K e. HL /\ X e. P /\ Y e. V ) -> ( s e. ( Atoms ` K ) -> ( ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) ) | 
						
							| 85 | 84 | rexlimdv |  |-  ( ( K e. HL /\ X e. P /\ Y e. V ) -> ( E. s e. ( Atoms ` K ) ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) -> X C Y ) ) | 
						
							| 86 | 85 | imp |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ E. s e. ( Atoms ` K ) ( X C ( X ( join ` K ) s ) /\ ( X ( join ` K ) s ) .<_ Y ) ) -> X C Y ) | 
						
							| 87 | 31 86 | syldan |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X ( lt ` K ) Y ) -> X C Y ) | 
						
							| 88 | 18 87 | syldan |  |-  ( ( ( K e. HL /\ X e. P /\ Y e. V ) /\ X .<_ Y ) -> X C Y ) |