Step |
Hyp |
Ref |
Expression |
1 |
|
lplni2.l |
|- .<_ = ( le ` K ) |
2 |
|
lplni2.j |
|- .\/ = ( join ` K ) |
3 |
|
lplni2.a |
|- A = ( Atoms ` K ) |
4 |
|
lplni2.p |
|- P = ( LPlanes ` K ) |
5 |
|
simp2 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( Q e. A /\ R e. A /\ S e. A ) ) |
6 |
|
simp3l |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q =/= R ) |
7 |
|
simp3r |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> -. S .<_ ( Q .\/ R ) ) |
8 |
|
eqidd |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) |
9 |
|
neeq1 |
|- ( q = Q -> ( q =/= r <-> Q =/= r ) ) |
10 |
|
oveq1 |
|- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
11 |
10
|
breq2d |
|- ( q = Q -> ( s .<_ ( q .\/ r ) <-> s .<_ ( Q .\/ r ) ) ) |
12 |
11
|
notbid |
|- ( q = Q -> ( -. s .<_ ( q .\/ r ) <-> -. s .<_ ( Q .\/ r ) ) ) |
13 |
10
|
oveq1d |
|- ( q = Q -> ( ( q .\/ r ) .\/ s ) = ( ( Q .\/ r ) .\/ s ) ) |
14 |
13
|
eqeq2d |
|- ( q = Q -> ( ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) <-> ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ r ) .\/ s ) ) ) |
15 |
9 12 14
|
3anbi123d |
|- ( q = Q -> ( ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) ) <-> ( Q =/= r /\ -. s .<_ ( Q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ r ) .\/ s ) ) ) ) |
16 |
|
neeq2 |
|- ( r = R -> ( Q =/= r <-> Q =/= R ) ) |
17 |
|
oveq2 |
|- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
18 |
17
|
breq2d |
|- ( r = R -> ( s .<_ ( Q .\/ r ) <-> s .<_ ( Q .\/ R ) ) ) |
19 |
18
|
notbid |
|- ( r = R -> ( -. s .<_ ( Q .\/ r ) <-> -. s .<_ ( Q .\/ R ) ) ) |
20 |
17
|
oveq1d |
|- ( r = R -> ( ( Q .\/ r ) .\/ s ) = ( ( Q .\/ R ) .\/ s ) ) |
21 |
20
|
eqeq2d |
|- ( r = R -> ( ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ r ) .\/ s ) <-> ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ s ) ) ) |
22 |
16 19 21
|
3anbi123d |
|- ( r = R -> ( ( Q =/= r /\ -. s .<_ ( Q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ r ) .\/ s ) ) <-> ( Q =/= R /\ -. s .<_ ( Q .\/ R ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ s ) ) ) ) |
23 |
|
breq1 |
|- ( s = S -> ( s .<_ ( Q .\/ R ) <-> S .<_ ( Q .\/ R ) ) ) |
24 |
23
|
notbid |
|- ( s = S -> ( -. s .<_ ( Q .\/ R ) <-> -. S .<_ ( Q .\/ R ) ) ) |
25 |
|
oveq2 |
|- ( s = S -> ( ( Q .\/ R ) .\/ s ) = ( ( Q .\/ R ) .\/ S ) ) |
26 |
25
|
eqeq2d |
|- ( s = S -> ( ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ s ) <-> ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) ) |
27 |
24 26
|
3anbi23d |
|- ( s = S -> ( ( Q =/= R /\ -. s .<_ ( Q .\/ R ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ s ) ) <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) ) ) |
28 |
15 22 27
|
rspc3ev |
|- ( ( ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) ) -> E. q e. A E. r e. A E. s e. A ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) ) ) |
29 |
5 6 7 8 28
|
syl13anc |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> E. q e. A E. r e. A E. s e. A ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) ) ) |
30 |
|
simp1 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> K e. HL ) |
31 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
32 |
31
|
3ad2ant1 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> K e. Lat ) |
33 |
|
simp21 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q e. A ) |
34 |
|
simp22 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R e. A ) |
35 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
36 |
35 2 3
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
37 |
30 33 34 36
|
syl3anc |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
38 |
|
simp23 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> S e. A ) |
39 |
35 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
40 |
38 39
|
syl |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> S e. ( Base ` K ) ) |
41 |
35 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( Q .\/ R ) .\/ S ) e. ( Base ` K ) ) |
42 |
32 37 40 41
|
syl3anc |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ S ) e. ( Base ` K ) ) |
43 |
35 1 2 3 4
|
islpln5 |
|- ( ( K e. HL /\ ( ( Q .\/ R ) .\/ S ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> E. q e. A E. r e. A E. s e. A ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) ) ) ) |
44 |
30 42 43
|
syl2anc |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> E. q e. A E. r e. A E. s e. A ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ ( ( Q .\/ R ) .\/ S ) = ( ( q .\/ r ) .\/ s ) ) ) ) |
45 |
29 44
|
mpbird |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ S ) e. P ) |