| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplnn0.z |  |-  .0. = ( 0. ` K ) | 
						
							| 2 |  | lplnn0.p |  |-  P = ( LPlanes ` K ) | 
						
							| 3 |  | eqid |  |-  ( Atoms ` K ) = ( Atoms ` K ) | 
						
							| 4 | 3 | atex |  |-  ( K e. HL -> ( Atoms ` K ) =/= (/) ) | 
						
							| 5 |  | n0 |  |-  ( ( Atoms ` K ) =/= (/) <-> E. p p e. ( Atoms ` K ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( K e. HL -> E. p p e. ( Atoms ` K ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( K e. HL /\ X e. P ) -> E. p p e. ( Atoms ` K ) ) | 
						
							| 8 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 9 | 8 3 2 | lplnnleat |  |-  ( ( K e. HL /\ X e. P /\ p e. ( Atoms ` K ) ) -> -. X ( le ` K ) p ) | 
						
							| 10 | 9 | 3expa |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> -. X ( le ` K ) p ) | 
						
							| 11 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> K e. OP ) | 
						
							| 13 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 14 | 13 3 | atbase |  |-  ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> p e. ( Base ` K ) ) | 
						
							| 16 | 13 8 1 | op0le |  |-  ( ( K e. OP /\ p e. ( Base ` K ) ) -> .0. ( le ` K ) p ) | 
						
							| 17 | 12 15 16 | syl2anc |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> .0. ( le ` K ) p ) | 
						
							| 18 |  | breq1 |  |-  ( X = .0. -> ( X ( le ` K ) p <-> .0. ( le ` K ) p ) ) | 
						
							| 19 | 17 18 | syl5ibrcom |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> ( X = .0. -> X ( le ` K ) p ) ) | 
						
							| 20 | 19 | necon3bd |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> ( -. X ( le ` K ) p -> X =/= .0. ) ) | 
						
							| 21 | 10 20 | mpd |  |-  ( ( ( K e. HL /\ X e. P ) /\ p e. ( Atoms ` K ) ) -> X =/= .0. ) | 
						
							| 22 | 7 21 | exlimddv |  |-  ( ( K e. HL /\ X e. P ) -> X =/= .0. ) |