| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplnnlt.s |  |-  .< = ( lt ` K ) | 
						
							| 2 |  | lplnnlt.p |  |-  P = ( LPlanes ` K ) | 
						
							| 3 | 1 | pltirr |  |-  ( ( K e. HL /\ X e. P ) -> -. X .< X ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> -. X .< X ) | 
						
							| 5 |  | breq2 |  |-  ( X = Y -> ( X .< X <-> X .< Y ) ) | 
						
							| 6 | 5 | notbid |  |-  ( X = Y -> ( -. X .< X <-> -. X .< Y ) ) | 
						
							| 7 | 4 6 | syl5ibcom |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> ( X = Y -> -. X .< Y ) ) | 
						
							| 8 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 9 | 8 1 | pltle |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> ( X .< Y -> X ( le ` K ) Y ) ) | 
						
							| 10 | 8 2 | lplncmp |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> ( X ( le ` K ) Y <-> X = Y ) ) | 
						
							| 11 | 9 10 | sylibd |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> ( X .< Y -> X = Y ) ) | 
						
							| 12 | 11 | necon3ad |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> ( X =/= Y -> -. X .< Y ) ) | 
						
							| 13 | 7 12 | pm2.61dne |  |-  ( ( K e. HL /\ X e. P /\ Y e. P ) -> -. X .< Y ) |