| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lplnri1.j |
|- .\/ = ( join ` K ) |
| 2 |
|
lplnri1.a |
|- A = ( Atoms ` K ) |
| 3 |
|
lplnri1.p |
|- P = ( LPlanes ` K ) |
| 4 |
|
lplnri1.y |
|- Y = ( ( Q .\/ R ) .\/ S ) |
| 5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 6 |
5 1 2 3 4
|
lplnriaN |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> -. Q ( le ` K ) ( R .\/ S ) ) |
| 7 |
5 1 2
|
atnlej2 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ -. Q ( le ` K ) ( R .\/ S ) ) -> Q =/= S ) |
| 8 |
6 7
|
syld3an3 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> Q =/= S ) |