Step |
Hyp |
Ref |
Expression |
1 |
|
islpln2a.l |
|- .<_ = ( le ` K ) |
2 |
|
islpln2a.j |
|- .\/ = ( join ` K ) |
3 |
|
islpln2a.a |
|- A = ( Atoms ` K ) |
4 |
|
islpln2a.p |
|- P = ( LPlanes ` K ) |
5 |
|
islpln2a.y |
|- Y = ( ( Q .\/ R ) .\/ S ) |
6 |
1 2 3 4 5
|
islpln2ah |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |
7 |
1 2 3
|
hlatcon3 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> -. Q .<_ ( R .\/ S ) ) |
8 |
7
|
3expia |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) -> -. Q .<_ ( R .\/ S ) ) ) |
9 |
6 8
|
sylbid |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P -> -. Q .<_ ( R .\/ S ) ) ) |
10 |
9
|
3impia |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> -. Q .<_ ( R .\/ S ) ) |