| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islpln2a.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | islpln2a.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | islpln2a.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | islpln2a.p |  |-  P = ( LPlanes ` K ) | 
						
							| 5 |  | islpln2a.y |  |-  Y = ( ( Q .\/ R ) .\/ S ) | 
						
							| 6 | 1 2 3 4 5 | islpln2ah |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) | 
						
							| 7 | 1 2 3 | hlatcon3 |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> -. Q .<_ ( R .\/ S ) ) | 
						
							| 8 | 7 | 3expia |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) -> -. Q .<_ ( R .\/ S ) ) ) | 
						
							| 9 | 6 8 | sylbid |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P -> -. Q .<_ ( R .\/ S ) ) ) | 
						
							| 10 | 9 | 3impia |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> -. Q .<_ ( R .\/ S ) ) |