Step |
Hyp |
Ref |
Expression |
1 |
|
cply1binom.p |
|- P = ( Poly1 ` R ) |
2 |
|
cply1binom.x |
|- X = ( var1 ` R ) |
3 |
|
cply1binom.a |
|- .+ = ( +g ` P ) |
4 |
|
cply1binom.m |
|- .X. = ( .r ` P ) |
5 |
|
cply1binom.t |
|- .x. = ( .g ` P ) |
6 |
|
cply1binom.g |
|- G = ( mulGrp ` P ) |
7 |
|
cply1binom.e |
|- .^ = ( .g ` G ) |
8 |
|
cply1binom.b |
|- B = ( Base ` P ) |
9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
10 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
11 |
|
ringcmn |
|- ( P e. Ring -> P e. CMnd ) |
12 |
9 10 11
|
3syl |
|- ( R e. CRing -> P e. CMnd ) |
13 |
12
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> P e. CMnd ) |
14 |
2 1 8
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
15 |
9 14
|
syl |
|- ( R e. CRing -> X e. B ) |
16 |
15
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> X e. B ) |
17 |
|
simp3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> A e. B ) |
18 |
8 3
|
cmncom |
|- ( ( P e. CMnd /\ X e. B /\ A e. B ) -> ( X .+ A ) = ( A .+ X ) ) |
19 |
13 16 17 18
|
syl3anc |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( X .+ A ) = ( A .+ X ) ) |
20 |
19
|
oveq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( X .+ A ) ) = ( N .^ ( A .+ X ) ) ) |
21 |
1
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
22 |
21
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> P e. CRing ) |
23 |
|
simp2 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> N e. NN0 ) |
24 |
8
|
eleq2i |
|- ( A e. B <-> A e. ( Base ` P ) ) |
25 |
24
|
biimpi |
|- ( A e. B -> A e. ( Base ` P ) ) |
26 |
25
|
3ad2ant3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> A e. ( Base ` P ) ) |
27 |
15 8
|
eleqtrdi |
|- ( R e. CRing -> X e. ( Base ` P ) ) |
28 |
27
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> X e. ( Base ` P ) ) |
29 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
30 |
29 4 5 3 6 7
|
crngbinom |
|- ( ( ( P e. CRing /\ N e. NN0 ) /\ ( A e. ( Base ` P ) /\ X e. ( Base ` P ) ) ) -> ( N .^ ( A .+ X ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |
31 |
22 23 26 28 30
|
syl22anc |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( A .+ X ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |
32 |
20 31
|
eqtrd |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. B ) -> ( N .^ ( X .+ A ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ X ) ) ) ) ) ) |