Metamath Proof Explorer


Theorem lptioo2cn

Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo2cn.1
|- J = ( TopOpen ` CCfld )
lptioo2cn.2
|- ( ph -> A e. RR* )
lptioo2cn.3
|- ( ph -> B e. RR )
lptioo2cn.4
|- ( ph -> A < B )
Assertion lptioo2cn
|- ( ph -> B e. ( ( limPt ` J ) ` ( A (,) B ) ) )

Proof

Step Hyp Ref Expression
1 lptioo2cn.1
 |-  J = ( TopOpen ` CCfld )
2 lptioo2cn.2
 |-  ( ph -> A e. RR* )
3 lptioo2cn.3
 |-  ( ph -> B e. RR )
4 lptioo2cn.4
 |-  ( ph -> A < B )
5 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
6 5 2 3 4 lptioo2
 |-  ( ph -> B e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) )
7 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
8 7 cnfldtop
 |-  ( TopOpen ` CCfld ) e. Top
9 ax-resscn
 |-  RR C_ CC
10 unicntop
 |-  CC = U. ( TopOpen ` CCfld )
11 9 10 sseqtri
 |-  RR C_ U. ( TopOpen ` CCfld )
12 ioossre
 |-  ( A (,) B ) C_ RR
13 eqid
 |-  U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld )
14 7 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
15 13 14 restlp
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ U. ( TopOpen ` CCfld ) /\ ( A (,) B ) C_ RR ) -> ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) )
16 8 11 12 15 mp3an
 |-  ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR )
17 6 16 eleqtrdi
 |-  ( ph -> B e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) )
18 elin
 |-  ( B e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) <-> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ B e. RR ) )
19 17 18 sylib
 |-  ( ph -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ B e. RR ) )
20 19 simpld
 |-  ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) )
21 1 eqcomi
 |-  ( TopOpen ` CCfld ) = J
22 21 fveq2i
 |-  ( limPt ` ( TopOpen ` CCfld ) ) = ( limPt ` J )
23 22 fveq1i
 |-  ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) = ( ( limPt ` J ) ` ( A (,) B ) )
24 20 23 eleqtrdi
 |-  ( ph -> B e. ( ( limPt ` J ) ` ( A (,) B ) ) )