Step |
Hyp |
Ref |
Expression |
1 |
|
lptioo2cn.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
lptioo2cn.2 |
|- ( ph -> A e. RR* ) |
3 |
|
lptioo2cn.3 |
|- ( ph -> B e. RR ) |
4 |
|
lptioo2cn.4 |
|- ( ph -> A < B ) |
5 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
6 |
5 2 3 4
|
lptioo2 |
|- ( ph -> B e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) |
7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
8 |
7
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
11 |
9 10
|
sseqtri |
|- RR C_ U. ( TopOpen ` CCfld ) |
12 |
|
ioossre |
|- ( A (,) B ) C_ RR |
13 |
|
eqid |
|- U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld ) |
14 |
7
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
15 |
13 14
|
restlp |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ U. ( TopOpen ` CCfld ) /\ ( A (,) B ) C_ RR ) -> ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) ) |
16 |
8 11 12 15
|
mp3an |
|- ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) |
17 |
6 16
|
eleqtrdi |
|- ( ph -> B e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) ) |
18 |
|
elin |
|- ( B e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) <-> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ B e. RR ) ) |
19 |
17 18
|
sylib |
|- ( ph -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ B e. RR ) ) |
20 |
19
|
simpld |
|- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
21 |
1
|
eqcomi |
|- ( TopOpen ` CCfld ) = J |
22 |
21
|
fveq2i |
|- ( limPt ` ( TopOpen ` CCfld ) ) = ( limPt ` J ) |
23 |
22
|
fveq1i |
|- ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) = ( ( limPt ` J ) ` ( A (,) B ) ) |
24 |
20 23
|
eleqtrdi |
|- ( ph -> B e. ( ( limPt ` J ) ` ( A (,) B ) ) ) |