| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lptre2pt.j |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
lptre2pt.a |
|- ( ph -> A C_ RR ) |
| 3 |
|
lptre2pt.x |
|- ( ph -> ( ( limPt ` J ) ` A ) =/= (/) ) |
| 4 |
|
lptre2pt.e |
|- ( ph -> E e. RR+ ) |
| 5 |
|
n0 |
|- ( ( ( limPt ` J ) ` A ) =/= (/) <-> E. w w e. ( ( limPt ` J ) ` A ) ) |
| 6 |
3 5
|
sylib |
|- ( ph -> E. w w e. ( ( limPt ` J ) ` A ) ) |
| 7 |
|
simpr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> w e. ( ( limPt ` J ) ` A ) ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> A C_ RR ) |
| 9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 10 |
1 9
|
eqeltri |
|- J e. Top |
| 11 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 12 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
| 13 |
11 12
|
eqtr4i |
|- RR = U. J |
| 14 |
13
|
lpss |
|- ( ( J e. Top /\ A C_ RR ) -> ( ( limPt ` J ) ` A ) C_ RR ) |
| 15 |
10 8 14
|
sylancr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( ( limPt ` J ) ` A ) C_ RR ) |
| 16 |
15 7
|
sseldd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> w e. RR ) |
| 17 |
1 8 16
|
islptre |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w e. ( ( limPt ` J ) ` A ) <-> A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 18 |
7 17
|
mpbid |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 19 |
4
|
rpred |
|- ( ph -> E e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> E e. RR ) |
| 21 |
20
|
rehalfcld |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( E / 2 ) e. RR ) |
| 22 |
16 21
|
resubcld |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w - ( E / 2 ) ) e. RR ) |
| 23 |
22
|
rexrd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w - ( E / 2 ) ) e. RR* ) |
| 24 |
16 21
|
readdcld |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w + ( E / 2 ) ) e. RR ) |
| 25 |
24
|
rexrd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w + ( E / 2 ) ) e. RR* ) |
| 26 |
4
|
rphalfcld |
|- ( ph -> ( E / 2 ) e. RR+ ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( E / 2 ) e. RR+ ) |
| 28 |
16 27
|
ltsubrpd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( w - ( E / 2 ) ) < w ) |
| 29 |
16 27
|
ltaddrpd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> w < ( w + ( E / 2 ) ) ) |
| 30 |
23 25 16 28 29
|
eliood |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> w e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 31 |
|
oveq1 |
|- ( a = ( w - ( E / 2 ) ) -> ( a (,) b ) = ( ( w - ( E / 2 ) ) (,) b ) ) |
| 32 |
31
|
eleq2d |
|- ( a = ( w - ( E / 2 ) ) -> ( w e. ( a (,) b ) <-> w e. ( ( w - ( E / 2 ) ) (,) b ) ) ) |
| 33 |
31
|
ineq1d |
|- ( a = ( w - ( E / 2 ) ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) = ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) ) |
| 34 |
33
|
neeq1d |
|- ( a = ( w - ( E / 2 ) ) -> ( ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) <-> ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 35 |
32 34
|
imbi12d |
|- ( a = ( w - ( E / 2 ) ) -> ( ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) <-> ( w e. ( ( w - ( E / 2 ) ) (,) b ) -> ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 36 |
|
oveq2 |
|- ( b = ( w + ( E / 2 ) ) -> ( ( w - ( E / 2 ) ) (,) b ) = ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 37 |
36
|
eleq2d |
|- ( b = ( w + ( E / 2 ) ) -> ( w e. ( ( w - ( E / 2 ) ) (,) b ) <-> w e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) ) |
| 38 |
36
|
ineq1d |
|- ( b = ( w + ( E / 2 ) ) -> ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) = ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) |
| 39 |
38
|
neeq1d |
|- ( b = ( w + ( E / 2 ) ) -> ( ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) <-> ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 40 |
37 39
|
imbi12d |
|- ( b = ( w + ( E / 2 ) ) -> ( ( w e. ( ( w - ( E / 2 ) ) (,) b ) -> ( ( ( w - ( E / 2 ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) <-> ( w e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) -> ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 41 |
35 40
|
rspc2v |
|- ( ( ( w - ( E / 2 ) ) e. RR* /\ ( w + ( E / 2 ) ) e. RR* ) -> ( A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) -> ( w e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) -> ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 42 |
23 25 41
|
syl2anc |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) -> ( w e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) -> ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 43 |
18 30 42
|
mp2d |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) ) |
| 44 |
|
n0 |
|- ( ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) =/= (/) <-> E. x x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) |
| 45 |
43 44
|
sylib |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> E. x x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) |
| 46 |
|
elinel2 |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> x e. ( A \ { w } ) ) |
| 47 |
46
|
eldifad |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> x e. A ) |
| 48 |
47
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) -> x e. A ) |
| 49 |
|
elinel1 |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) -> x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 51 |
46
|
eldifbd |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> -. x e. { w } ) |
| 52 |
51
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) -> -. x e. { w } ) |
| 53 |
50 52
|
eldifd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) -> x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) |
| 54 |
48 53
|
jca |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) ) -> ( x e. A /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) ) |
| 55 |
54
|
ex |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> ( x e. A /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) ) ) |
| 56 |
55
|
eximdv |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( E. x x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) i^i ( A \ { w } ) ) -> E. x ( x e. A /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) ) ) |
| 57 |
45 56
|
mpd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> E. x ( x e. A /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) ) |
| 58 |
|
df-rex |
|- ( E. x e. A x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) <-> E. x ( x e. A /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) ) |
| 59 |
57 58
|
sylibr |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> E. x e. A x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) |
| 60 |
18
|
adantr |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 61 |
|
eldifi |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 62 |
|
elioore |
|- ( x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) -> x e. RR ) |
| 63 |
61 62
|
syl |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> x e. RR ) |
| 64 |
63
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> x e. RR ) |
| 65 |
16
|
adantr |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> w e. RR ) |
| 66 |
|
eldifsni |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> x =/= w ) |
| 67 |
66
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> x =/= w ) |
| 68 |
|
simpr |
|- ( ( x e. RR /\ w e. RR ) -> w e. RR ) |
| 69 |
|
resubcl |
|- ( ( x e. RR /\ w e. RR ) -> ( x - w ) e. RR ) |
| 70 |
69
|
recnd |
|- ( ( x e. RR /\ w e. RR ) -> ( x - w ) e. CC ) |
| 71 |
70
|
abscld |
|- ( ( x e. RR /\ w e. RR ) -> ( abs ` ( x - w ) ) e. RR ) |
| 72 |
68 71
|
resubcld |
|- ( ( x e. RR /\ w e. RR ) -> ( w - ( abs ` ( x - w ) ) ) e. RR ) |
| 73 |
72
|
rexrd |
|- ( ( x e. RR /\ w e. RR ) -> ( w - ( abs ` ( x - w ) ) ) e. RR* ) |
| 74 |
73
|
3adant3 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( w - ( abs ` ( x - w ) ) ) e. RR* ) |
| 75 |
68 71
|
readdcld |
|- ( ( x e. RR /\ w e. RR ) -> ( w + ( abs ` ( x - w ) ) ) e. RR ) |
| 76 |
75
|
rexrd |
|- ( ( x e. RR /\ w e. RR ) -> ( w + ( abs ` ( x - w ) ) ) e. RR* ) |
| 77 |
76
|
3adant3 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( w + ( abs ` ( x - w ) ) ) e. RR* ) |
| 78 |
|
simp2 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> w e. RR ) |
| 79 |
70
|
3adant3 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( x - w ) e. CC ) |
| 80 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 81 |
80
|
3ad2ant1 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> x e. CC ) |
| 82 |
78
|
recnd |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> w e. CC ) |
| 83 |
|
simp3 |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> x =/= w ) |
| 84 |
81 82 83
|
subne0d |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( x - w ) =/= 0 ) |
| 85 |
79 84
|
absrpcld |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( abs ` ( x - w ) ) e. RR+ ) |
| 86 |
78 85
|
ltsubrpd |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> ( w - ( abs ` ( x - w ) ) ) < w ) |
| 87 |
78 85
|
ltaddrpd |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> w < ( w + ( abs ` ( x - w ) ) ) ) |
| 88 |
74 77 78 86 87
|
eliood |
|- ( ( x e. RR /\ w e. RR /\ x =/= w ) -> w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 89 |
64 65 67 88
|
syl3anc |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 90 |
63
|
recnd |
|- ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> x e. CC ) |
| 91 |
90
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> x e. CC ) |
| 92 |
65
|
recnd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> w e. CC ) |
| 93 |
91 92
|
subcld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( x - w ) e. CC ) |
| 94 |
93
|
abscld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( abs ` ( x - w ) ) e. RR ) |
| 95 |
65 94
|
resubcld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( w - ( abs ` ( x - w ) ) ) e. RR ) |
| 96 |
95
|
rexrd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( w - ( abs ` ( x - w ) ) ) e. RR* ) |
| 97 |
65 94
|
readdcld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( w + ( abs ` ( x - w ) ) ) e. RR ) |
| 98 |
97
|
rexrd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( w + ( abs ` ( x - w ) ) ) e. RR* ) |
| 99 |
|
oveq1 |
|- ( a = ( w - ( abs ` ( x - w ) ) ) -> ( a (,) b ) = ( ( w - ( abs ` ( x - w ) ) ) (,) b ) ) |
| 100 |
99
|
eleq2d |
|- ( a = ( w - ( abs ` ( x - w ) ) ) -> ( w e. ( a (,) b ) <-> w e. ( ( w - ( abs ` ( x - w ) ) ) (,) b ) ) ) |
| 101 |
99
|
ineq1d |
|- ( a = ( w - ( abs ` ( x - w ) ) ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) = ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) ) |
| 102 |
101
|
neeq1d |
|- ( a = ( w - ( abs ` ( x - w ) ) ) -> ( ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) <-> ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 103 |
100 102
|
imbi12d |
|- ( a = ( w - ( abs ` ( x - w ) ) ) -> ( ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) <-> ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) b ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 104 |
|
oveq2 |
|- ( b = ( w + ( abs ` ( x - w ) ) ) -> ( ( w - ( abs ` ( x - w ) ) ) (,) b ) = ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 105 |
104
|
eleq2d |
|- ( b = ( w + ( abs ` ( x - w ) ) ) -> ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) b ) <-> w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) ) |
| 106 |
104
|
ineq1d |
|- ( b = ( w + ( abs ` ( x - w ) ) ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) = ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) |
| 107 |
106
|
neeq1d |
|- ( b = ( w + ( abs ` ( x - w ) ) ) -> ( ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) <-> ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) |
| 108 |
105 107
|
imbi12d |
|- ( b = ( w + ( abs ` ( x - w ) ) ) -> ( ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) b ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) b ) i^i ( A \ { w } ) ) =/= (/) ) <-> ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 109 |
103 108
|
rspc2v |
|- ( ( ( w - ( abs ` ( x - w ) ) ) e. RR* /\ ( w + ( abs ` ( x - w ) ) ) e. RR* ) -> ( A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) -> ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 110 |
96 98 109
|
syl2anc |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( A. a e. RR* A. b e. RR* ( w e. ( a (,) b ) -> ( ( a (,) b ) i^i ( A \ { w } ) ) =/= (/) ) -> ( w e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) ) ) ) |
| 111 |
60 89 110
|
mp2d |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) ) |
| 112 |
|
n0 |
|- ( ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) =/= (/) <-> E. y y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) |
| 113 |
111 112
|
sylib |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> E. y y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) |
| 114 |
|
elinel2 |
|- ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> y e. ( A \ { w } ) ) |
| 115 |
114
|
eldifad |
|- ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> y e. A ) |
| 116 |
115
|
adantl |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> y e. A ) |
| 117 |
65
|
adantr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> w e. RR ) |
| 118 |
64
|
adantr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> x e. RR ) |
| 119 |
|
elinel1 |
|- ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 120 |
119
|
adantl |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 121 |
|
simpl1 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> w e. RR ) |
| 122 |
|
simpl2 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> x e. RR ) |
| 123 |
|
simpl3 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 124 |
|
simpr |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> 0 <_ ( x - w ) ) |
| 125 |
122 121
|
subge0d |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> ( 0 <_ ( x - w ) <-> w <_ x ) ) |
| 126 |
124 125
|
mpbid |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> w <_ x ) |
| 127 |
121 122 126
|
abssubge0d |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> ( abs ` ( x - w ) ) = ( x - w ) ) |
| 128 |
127
|
oveq2d |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> ( w - ( abs ` ( x - w ) ) ) = ( w - ( x - w ) ) ) |
| 129 |
127
|
oveq2d |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> ( w + ( abs ` ( x - w ) ) ) = ( w + ( x - w ) ) ) |
| 130 |
128 129
|
oveq12d |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) = ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) |
| 131 |
123 130
|
eleqtrd |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) |
| 132 |
|
elioore |
|- ( y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) -> y e. RR ) |
| 133 |
132
|
3ad2ant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> y e. RR ) |
| 134 |
|
simpl |
|- ( ( w e. RR /\ x e. RR ) -> w e. RR ) |
| 135 |
69
|
ancoms |
|- ( ( w e. RR /\ x e. RR ) -> ( x - w ) e. RR ) |
| 136 |
134 135
|
resubcld |
|- ( ( w e. RR /\ x e. RR ) -> ( w - ( x - w ) ) e. RR ) |
| 137 |
136
|
rexrd |
|- ( ( w e. RR /\ x e. RR ) -> ( w - ( x - w ) ) e. RR* ) |
| 138 |
137
|
3adant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> ( w - ( x - w ) ) e. RR* ) |
| 139 |
134 135
|
readdcld |
|- ( ( w e. RR /\ x e. RR ) -> ( w + ( x - w ) ) e. RR ) |
| 140 |
139
|
rexrd |
|- ( ( w e. RR /\ x e. RR ) -> ( w + ( x - w ) ) e. RR* ) |
| 141 |
140
|
3adant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> ( w + ( x - w ) ) e. RR* ) |
| 142 |
|
simp3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) |
| 143 |
|
iooltub |
|- ( ( ( w - ( x - w ) ) e. RR* /\ ( w + ( x - w ) ) e. RR* /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> y < ( w + ( x - w ) ) ) |
| 144 |
138 141 142 143
|
syl3anc |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> y < ( w + ( x - w ) ) ) |
| 145 |
134
|
recnd |
|- ( ( w e. RR /\ x e. RR ) -> w e. CC ) |
| 146 |
80
|
adantl |
|- ( ( w e. RR /\ x e. RR ) -> x e. CC ) |
| 147 |
145 146
|
pncan3d |
|- ( ( w e. RR /\ x e. RR ) -> ( w + ( x - w ) ) = x ) |
| 148 |
147
|
3adant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> ( w + ( x - w ) ) = x ) |
| 149 |
144 148
|
breqtrd |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> y < x ) |
| 150 |
133 149
|
gtned |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( x - w ) ) (,) ( w + ( x - w ) ) ) ) -> x =/= y ) |
| 151 |
121 122 131 150
|
syl3anc |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ 0 <_ ( x - w ) ) -> x =/= y ) |
| 152 |
|
simpl1 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> w e. RR ) |
| 153 |
|
simpl2 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> x e. RR ) |
| 154 |
|
simpl3 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 155 |
135
|
adantr |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( x - w ) e. RR ) |
| 156 |
|
0red |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> 0 e. RR ) |
| 157 |
|
simpr |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> -. 0 <_ ( x - w ) ) |
| 158 |
155 156
|
ltnled |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( ( x - w ) < 0 <-> -. 0 <_ ( x - w ) ) ) |
| 159 |
157 158
|
mpbird |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( x - w ) < 0 ) |
| 160 |
155 156 159
|
ltled |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( x - w ) <_ 0 ) |
| 161 |
155 160
|
absnidd |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( abs ` ( x - w ) ) = -u ( x - w ) ) |
| 162 |
146
|
adantr |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> x e. CC ) |
| 163 |
145
|
adantr |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> w e. CC ) |
| 164 |
162 163
|
negsubdi2d |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> -u ( x - w ) = ( w - x ) ) |
| 165 |
161 164
|
eqtrd |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( abs ` ( x - w ) ) = ( w - x ) ) |
| 166 |
165
|
oveq2d |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( w - ( abs ` ( x - w ) ) ) = ( w - ( w - x ) ) ) |
| 167 |
165
|
oveq2d |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( w + ( abs ` ( x - w ) ) ) = ( w + ( w - x ) ) ) |
| 168 |
166 167
|
oveq12d |
|- ( ( ( w e. RR /\ x e. RR ) /\ -. 0 <_ ( x - w ) ) -> ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) = ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) |
| 169 |
168
|
3adantl3 |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) = ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) |
| 170 |
154 169
|
eleqtrd |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) |
| 171 |
|
simp2 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> x e. RR ) |
| 172 |
171
|
rexrd |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> x e. RR* ) |
| 173 |
|
resubcl |
|- ( ( w e. RR /\ x e. RR ) -> ( w - x ) e. RR ) |
| 174 |
134 173
|
readdcld |
|- ( ( w e. RR /\ x e. RR ) -> ( w + ( w - x ) ) e. RR ) |
| 175 |
174
|
rexrd |
|- ( ( w e. RR /\ x e. RR ) -> ( w + ( w - x ) ) e. RR* ) |
| 176 |
175
|
3adant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> ( w + ( w - x ) ) e. RR* ) |
| 177 |
|
simp3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) |
| 178 |
145 146
|
nncand |
|- ( ( w e. RR /\ x e. RR ) -> ( w - ( w - x ) ) = x ) |
| 179 |
178
|
oveq1d |
|- ( ( w e. RR /\ x e. RR ) -> ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) = ( x (,) ( w + ( w - x ) ) ) ) |
| 180 |
179
|
3adant3 |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) = ( x (,) ( w + ( w - x ) ) ) ) |
| 181 |
177 180
|
eleqtrd |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> y e. ( x (,) ( w + ( w - x ) ) ) ) |
| 182 |
|
ioogtlb |
|- ( ( x e. RR* /\ ( w + ( w - x ) ) e. RR* /\ y e. ( x (,) ( w + ( w - x ) ) ) ) -> x < y ) |
| 183 |
172 176 181 182
|
syl3anc |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> x < y ) |
| 184 |
171 183
|
ltned |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( w - x ) ) (,) ( w + ( w - x ) ) ) ) -> x =/= y ) |
| 185 |
152 153 170 184
|
syl3anc |
|- ( ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) /\ -. 0 <_ ( x - w ) ) -> x =/= y ) |
| 186 |
151 185
|
pm2.61dan |
|- ( ( w e. RR /\ x e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> x =/= y ) |
| 187 |
117 118 120 186
|
syl3anc |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> x =/= y ) |
| 188 |
63
|
adantr |
|- ( ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> x e. RR ) |
| 189 |
|
elioore |
|- ( y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) -> y e. RR ) |
| 190 |
119 189
|
syl |
|- ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> y e. RR ) |
| 191 |
190
|
adantl |
|- ( ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> y e. RR ) |
| 192 |
188 191
|
resubcld |
|- ( ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( x - y ) e. RR ) |
| 193 |
192
|
recnd |
|- ( ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( x - y ) e. CC ) |
| 194 |
193
|
adantll |
|- ( ( ( ph /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( x - y ) e. CC ) |
| 195 |
194
|
abscld |
|- ( ( ( ph /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - y ) ) e. RR ) |
| 196 |
195
|
adantllr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - y ) ) e. RR ) |
| 197 |
94
|
adantr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - w ) ) e. RR ) |
| 198 |
16
|
adantr |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> w e. RR ) |
| 199 |
190
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> y e. RR ) |
| 200 |
198 199
|
resubcld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( w - y ) e. RR ) |
| 201 |
200
|
recnd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( w - y ) e. CC ) |
| 202 |
201
|
abscld |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( w - y ) ) e. RR ) |
| 203 |
202
|
adantlr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( w - y ) ) e. RR ) |
| 204 |
197 203
|
readdcld |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( ( abs ` ( x - w ) ) + ( abs ` ( w - y ) ) ) e. RR ) |
| 205 |
19
|
ad3antrrr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> E e. RR ) |
| 206 |
118
|
recnd |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> x e. CC ) |
| 207 |
190
|
recnd |
|- ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> y e. CC ) |
| 208 |
207
|
adantl |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> y e. CC ) |
| 209 |
92
|
adantr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> w e. CC ) |
| 210 |
206 208 209
|
abs3difd |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - y ) ) <_ ( ( abs ` ( x - w ) ) + ( abs ` ( w - y ) ) ) ) |
| 211 |
21
|
ad2antrr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( E / 2 ) e. RR ) |
| 212 |
|
simpll |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ph ) |
| 213 |
61
|
adantl |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 214 |
62 146
|
sylan2 |
|- ( ( w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> x e. CC ) |
| 215 |
62 145
|
sylan2 |
|- ( ( w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> w e. CC ) |
| 216 |
214 215
|
abssubd |
|- ( ( w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( x - w ) ) = ( abs ` ( w - x ) ) ) |
| 217 |
216
|
3adant1 |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( x - w ) ) = ( abs ` ( w - x ) ) ) |
| 218 |
|
simp2 |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> w e. RR ) |
| 219 |
19
|
rehalfcld |
|- ( ph -> ( E / 2 ) e. RR ) |
| 220 |
219
|
3ad2ant1 |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( E / 2 ) e. RR ) |
| 221 |
|
simp3 |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) |
| 222 |
218 220 221
|
iooabslt |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( w - x ) ) < ( E / 2 ) ) |
| 223 |
217 222
|
eqbrtrd |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( x - w ) ) < ( E / 2 ) ) |
| 224 |
212 65 213 223
|
syl3anc |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( abs ` ( x - w ) ) < ( E / 2 ) ) |
| 225 |
224
|
adantr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - w ) ) < ( E / 2 ) ) |
| 226 |
212 65 213
|
3jca |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) ) |
| 227 |
|
simpl |
|- ( ( w e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> w e. RR ) |
| 228 |
189
|
adantl |
|- ( ( w e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> y e. RR ) |
| 229 |
227 228
|
resubcld |
|- ( ( w e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( w - y ) e. RR ) |
| 230 |
229
|
recnd |
|- ( ( w e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( w - y ) e. CC ) |
| 231 |
230
|
abscld |
|- ( ( w e. RR /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( w - y ) ) e. RR ) |
| 232 |
231
|
3ad2antl2 |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( w - y ) ) e. RR ) |
| 233 |
220
|
adantr |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( E / 2 ) e. RR ) |
| 234 |
214 215
|
subcld |
|- ( ( w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( x - w ) e. CC ) |
| 235 |
234
|
abscld |
|- ( ( w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( x - w ) ) e. RR ) |
| 236 |
235
|
3adant1 |
|- ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) -> ( abs ` ( x - w ) ) e. RR ) |
| 237 |
236
|
adantr |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( x - w ) ) e. RR ) |
| 238 |
|
simpl2 |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> w e. RR ) |
| 239 |
|
simpr |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) |
| 240 |
238 237 239
|
iooabslt |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( w - y ) ) < ( abs ` ( x - w ) ) ) |
| 241 |
223
|
adantr |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( x - w ) ) < ( E / 2 ) ) |
| 242 |
232 237 233 240 241
|
lttrd |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( w - y ) ) < ( E / 2 ) ) |
| 243 |
232 233 242
|
ltled |
|- ( ( ( ph /\ w e. RR /\ x e. ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) ) /\ y e. ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) ) -> ( abs ` ( w - y ) ) <_ ( E / 2 ) ) |
| 244 |
226 119 243
|
syl2an |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( w - y ) ) <_ ( E / 2 ) ) |
| 245 |
197 203 211 211 225 244
|
ltleaddd |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( ( abs ` ( x - w ) ) + ( abs ` ( w - y ) ) ) < ( ( E / 2 ) + ( E / 2 ) ) ) |
| 246 |
19
|
recnd |
|- ( ph -> E e. CC ) |
| 247 |
246
|
2halvesd |
|- ( ph -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
| 248 |
247
|
ad3antrrr |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
| 249 |
245 248
|
breqtrd |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( ( abs ` ( x - w ) ) + ( abs ` ( w - y ) ) ) < E ) |
| 250 |
196 204 205 210 249
|
lelttrd |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( abs ` ( x - y ) ) < E ) |
| 251 |
116 187 250
|
jca32 |
|- ( ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) /\ y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) ) -> ( y e. A /\ ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) |
| 252 |
251
|
ex |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> ( y e. A /\ ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) ) |
| 253 |
252
|
eximdv |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> ( E. y y e. ( ( ( w - ( abs ` ( x - w ) ) ) (,) ( w + ( abs ` ( x - w ) ) ) ) i^i ( A \ { w } ) ) -> E. y ( y e. A /\ ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) ) |
| 254 |
113 253
|
mpd |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> E. y ( y e. A /\ ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) |
| 255 |
|
df-rex |
|- ( E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) <-> E. y ( y e. A /\ ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) |
| 256 |
254 255
|
sylibr |
|- ( ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) /\ x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) ) -> E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) |
| 257 |
256
|
ex |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) |
| 258 |
257
|
reximdv |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> ( E. x e. A x e. ( ( ( w - ( E / 2 ) ) (,) ( w + ( E / 2 ) ) ) \ { w } ) -> E. x e. A E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) ) |
| 259 |
59 258
|
mpd |
|- ( ( ph /\ w e. ( ( limPt ` J ) ` A ) ) -> E. x e. A E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) |
| 260 |
6 259
|
exlimddv |
|- ( ph -> E. x e. A E. y e. A ( x =/= y /\ ( abs ` ( x - y ) ) < E ) ) |