Step |
Hyp |
Ref |
Expression |
1 |
|
lpvtx.i |
|- I = ( iEdg ` G ) |
2 |
|
simp1 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> G e. UHGraph ) |
3 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
4 |
3
|
funfnd |
|- ( G e. UHGraph -> I Fn dom I ) |
5 |
4
|
3ad2ant1 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> I Fn dom I ) |
6 |
|
simp2 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> J e. dom I ) |
7 |
1
|
uhgrn0 |
|- ( ( G e. UHGraph /\ I Fn dom I /\ J e. dom I ) -> ( I ` J ) =/= (/) ) |
8 |
2 5 6 7
|
syl3anc |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) =/= (/) ) |
9 |
|
neeq1 |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) <-> { A } =/= (/) ) ) |
10 |
9
|
biimpd |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
12 |
8 11
|
mpd |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } =/= (/) ) |
13 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
14 |
13 1
|
uhgrss |
|- ( ( G e. UHGraph /\ J e. dom I ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
15 |
14
|
3adant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
16 |
|
sseq1 |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
17 |
16
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
18 |
15 17
|
mpbid |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } C_ ( Vtx ` G ) ) |
19 |
|
snnzb |
|- ( A e. _V <-> { A } =/= (/) ) |
20 |
|
snssg |
|- ( A e. _V -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
21 |
19 20
|
sylbir |
|- ( { A } =/= (/) -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
22 |
18 21
|
syl5ibrcom |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( { A } =/= (/) -> A e. ( Vtx ` G ) ) ) |
23 |
12 22
|
mpd |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |