Metamath Proof Explorer


Theorem lsatel

Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatel.o
|- .0. = ( 0g ` W )
lsatel.n
|- N = ( LSpan ` W )
lsatel.a
|- A = ( LSAtoms ` W )
lsatel.w
|- ( ph -> W e. LVec )
lsatel.u
|- ( ph -> U e. A )
lsatel.x
|- ( ph -> X e. U )
lsatel.e
|- ( ph -> X =/= .0. )
Assertion lsatel
|- ( ph -> U = ( N ` { X } ) )

Proof

Step Hyp Ref Expression
1 lsatel.o
 |-  .0. = ( 0g ` W )
2 lsatel.n
 |-  N = ( LSpan ` W )
3 lsatel.a
 |-  A = ( LSAtoms ` W )
4 lsatel.w
 |-  ( ph -> W e. LVec )
5 lsatel.u
 |-  ( ph -> U e. A )
6 lsatel.x
 |-  ( ph -> X e. U )
7 lsatel.e
 |-  ( ph -> X =/= .0. )
8 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
9 lveclmod
 |-  ( W e. LVec -> W e. LMod )
10 4 9 syl
 |-  ( ph -> W e. LMod )
11 8 3 10 5 lsatlssel
 |-  ( ph -> U e. ( LSubSp ` W ) )
12 8 2 10 11 6 lspsnel5a
 |-  ( ph -> ( N ` { X } ) C_ U )
13 eqid
 |-  ( Base ` W ) = ( Base ` W )
14 13 8 lssel
 |-  ( ( U e. ( LSubSp ` W ) /\ X e. U ) -> X e. ( Base ` W ) )
15 11 6 14 syl2anc
 |-  ( ph -> X e. ( Base ` W ) )
16 13 2 1 3 lsatlspsn2
 |-  ( ( W e. LMod /\ X e. ( Base ` W ) /\ X =/= .0. ) -> ( N ` { X } ) e. A )
17 10 15 7 16 syl3anc
 |-  ( ph -> ( N ` { X } ) e. A )
18 3 4 17 5 lsatcmp
 |-  ( ph -> ( ( N ` { X } ) C_ U <-> ( N ` { X } ) = U ) )
19 12 18 mpbid
 |-  ( ph -> ( N ` { X } ) = U )
20 19 eqcomd
 |-  ( ph -> U = ( N ` { X } ) )