| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmcntz.p | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmcntz.s | 
							 |-  ( ph -> S e. ( SubGrp ` G ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmcntz.t | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmcntz.u | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmdisj.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							lsmdisj.i | 
							 |-  ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) | 
						
						
							| 7 | 
							
								
							 | 
							lsmdisj2.i | 
							 |-  ( ph -> ( S i^i T ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							lsmelval | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( S .(+) U ) <-> E. s e. S E. u e. U x = ( s ( +g ` G ) u ) ) )  | 
						
						
							| 10 | 
							
								2 4 9
							 | 
							syl2anc | 
							 |-  ( ph -> ( x e. ( S .(+) U ) <-> E. s e. S E. u e. U x = ( s ( +g ` G ) u ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. S )  | 
						
						
							| 12 | 
							
								
							 | 
							subgrcl | 
							 |-  ( S e. ( SubGrp ` G ) -> G e. Grp )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> G e. Grp )  | 
						
						
							| 15 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> S e. ( SubGrp ` G ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 17 | 
							
								16
							 | 
							subgss | 
							 |-  ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							syl | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> S C_ ( Base ` G ) )  | 
						
						
							| 19 | 
							
								18 11
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. ( Base ` G ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( invg ` G ) = ( invg ` G )  | 
						
						
							| 21 | 
							
								16 8 5 20
							 | 
							grplinv | 
							 |-  ( ( G e. Grp /\ s e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) = .0. )  | 
						
						
							| 22 | 
							
								14 19 21
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) = .0. )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( .0. ( +g ` G ) u ) )  | 
						
						
							| 24 | 
							
								20
							 | 
							subginvcl | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ s e. S ) -> ( ( invg ` G ) ` s ) e. S )  | 
						
						
							| 25 | 
							
								15 11 24
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( invg ` G ) ` s ) e. S )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( invg ` G ) ` s ) e. ( Base ` G ) )  | 
						
						
							| 27 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> U e. ( SubGrp ` G ) )  | 
						
						
							| 28 | 
							
								16
							 | 
							subgss | 
							 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> U C_ ( Base ` G ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. U )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( Base ` G ) )  | 
						
						
							| 32 | 
							
								16 8
							 | 
							grpass | 
							 |-  ( ( G e. Grp /\ ( ( ( invg ` G ) ` s ) e. ( Base ` G ) /\ s e. ( Base ` G ) /\ u e. ( Base ` G ) ) ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) )  | 
						
						
							| 33 | 
							
								14 26 19 31 32
							 | 
							syl13anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( ( invg ` G ) ` s ) ( +g ` G ) s ) ( +g ` G ) u ) = ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) )  | 
						
						
							| 34 | 
							
								16 8 5
							 | 
							grplid | 
							 |-  ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( .0. ( +g ` G ) u ) = u )  | 
						
						
							| 35 | 
							
								14 31 34
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( .0. ( +g ` G ) u ) = u )  | 
						
						
							| 36 | 
							
								23 33 35
							 | 
							3eqtr3d | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) = u )  | 
						
						
							| 37 | 
							
								3
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> T e. ( SubGrp ` G ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) e. T )  | 
						
						
							| 39 | 
							
								8 1
							 | 
							lsmelvali | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) /\ ( ( ( invg ` G ) ` s ) e. S /\ ( s ( +g ` G ) u ) e. T ) ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) e. ( S .(+) T ) )  | 
						
						
							| 40 | 
							
								15 37 25 38 39
							 | 
							syl22anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( ( invg ` G ) ` s ) ( +g ` G ) ( s ( +g ` G ) u ) ) e. ( S .(+) T ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							eqeltrrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( S .(+) T ) )  | 
						
						
							| 42 | 
							
								41 30
							 | 
							elind | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. ( ( S .(+) T ) i^i U ) )  | 
						
						
							| 43 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( ( S .(+) T ) i^i U ) = { .0. } ) | 
						
						
							| 44 | 
							
								42 43
							 | 
							eleqtrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u e. { .0. } ) | 
						
						
							| 45 | 
							
								
							 | 
							elsni | 
							 |-  ( u e. { .0. } -> u = .0. ) | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> u = .0. )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = ( s ( +g ` G ) .0. ) )  | 
						
						
							| 48 | 
							
								16 8 5
							 | 
							grprid | 
							 |-  ( ( G e. Grp /\ s e. ( Base ` G ) ) -> ( s ( +g ` G ) .0. ) = s )  | 
						
						
							| 49 | 
							
								14 19 48
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) .0. ) = s )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = s )  | 
						
						
							| 51 | 
							
								50 38
							 | 
							eqeltrrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. T )  | 
						
						
							| 52 | 
							
								11 51
							 | 
							elind | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. ( S i^i T ) )  | 
						
						
							| 53 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( S i^i T ) = { .0. } ) | 
						
						
							| 54 | 
							
								52 53
							 | 
							eleqtrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s e. { .0. } ) | 
						
						
							| 55 | 
							
								
							 | 
							elsni | 
							 |-  ( s e. { .0. } -> s = .0. ) | 
						
						
							| 56 | 
							
								54 55
							 | 
							syl | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> s = .0. )  | 
						
						
							| 57 | 
							
								56 46
							 | 
							oveq12d | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = ( .0. ( +g ` G ) .0. ) )  | 
						
						
							| 58 | 
							
								16 5
							 | 
							grpidcl | 
							 |-  ( G e. Grp -> .0. e. ( Base ` G ) )  | 
						
						
							| 59 | 
							
								16 8 5
							 | 
							grplid | 
							 |-  ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. )  | 
						
						
							| 60 | 
							
								13 58 59
							 | 
							syl2anc2 | 
							 |-  ( ph -> ( .0. ( +g ` G ) .0. ) = .0. )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( .0. ( +g ` G ) .0. ) = .0. )  | 
						
						
							| 62 | 
							
								57 61
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( s e. S /\ u e. U ) ) /\ ( s ( +g ` G ) u ) e. T ) -> ( s ( +g ` G ) u ) = .0. )  | 
						
						
							| 63 | 
							
								62
							 | 
							ex | 
							 |-  ( ( ph /\ ( s e. S /\ u e. U ) ) -> ( ( s ( +g ` G ) u ) e. T -> ( s ( +g ` G ) u ) = .0. ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = ( s ( +g ` G ) u ) -> ( x e. T <-> ( s ( +g ` G ) u ) e. T ) )  | 
						
						
							| 65 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = ( s ( +g ` G ) u ) -> ( x = .0. <-> ( s ( +g ` G ) u ) = .0. ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							imbi12d | 
							 |-  ( x = ( s ( +g ` G ) u ) -> ( ( x e. T -> x = .0. ) <-> ( ( s ( +g ` G ) u ) e. T -> ( s ( +g ` G ) u ) = .0. ) ) )  | 
						
						
							| 67 | 
							
								63 66
							 | 
							syl5ibrcom | 
							 |-  ( ( ph /\ ( s e. S /\ u e. U ) ) -> ( x = ( s ( +g ` G ) u ) -> ( x e. T -> x = .0. ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							rexlimdvva | 
							 |-  ( ph -> ( E. s e. S E. u e. U x = ( s ( +g ` G ) u ) -> ( x e. T -> x = .0. ) ) )  | 
						
						
							| 69 | 
							
								10 68
							 | 
							sylbid | 
							 |-  ( ph -> ( x e. ( S .(+) U ) -> ( x e. T -> x = .0. ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							impcomd | 
							 |-  ( ph -> ( ( x e. T /\ x e. ( S .(+) U ) ) -> x = .0. ) )  | 
						
						
							| 71 | 
							
								
							 | 
							elin | 
							 |-  ( x e. ( T i^i ( S .(+) U ) ) <-> ( x e. T /\ x e. ( S .(+) U ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							velsn | 
							 |-  ( x e. { .0. } <-> x = .0. ) | 
						
						
							| 73 | 
							
								70 71 72
							 | 
							3imtr4g | 
							 |-  ( ph -> ( x e. ( T i^i ( S .(+) U ) ) -> x e. { .0. } ) ) | 
						
						
							| 74 | 
							
								73
							 | 
							ssrdv | 
							 |-  ( ph -> ( T i^i ( S .(+) U ) ) C_ { .0. } ) | 
						
						
							| 75 | 
							
								5
							 | 
							subg0cl | 
							 |-  ( T e. ( SubGrp ` G ) -> .0. e. T )  | 
						
						
							| 76 | 
							
								3 75
							 | 
							syl | 
							 |-  ( ph -> .0. e. T )  | 
						
						
							| 77 | 
							
								1
							 | 
							lsmub1 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> S C_ ( S .(+) U ) )  | 
						
						
							| 78 | 
							
								2 4 77
							 | 
							syl2anc | 
							 |-  ( ph -> S C_ ( S .(+) U ) )  | 
						
						
							| 79 | 
							
								5
							 | 
							subg0cl | 
							 |-  ( S e. ( SubGrp ` G ) -> .0. e. S )  | 
						
						
							| 80 | 
							
								2 79
							 | 
							syl | 
							 |-  ( ph -> .0. e. S )  | 
						
						
							| 81 | 
							
								78 80
							 | 
							sseldd | 
							 |-  ( ph -> .0. e. ( S .(+) U ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							elind | 
							 |-  ( ph -> .0. e. ( T i^i ( S .(+) U ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							snssd | 
							 |-  ( ph -> { .0. } C_ ( T i^i ( S .(+) U ) ) ) | 
						
						
							| 84 | 
							
								74 83
							 | 
							eqssd | 
							 |-  ( ph -> ( T i^i ( S .(+) U ) ) = { .0. } ) |