Metamath Proof Explorer


Theorem lsmdisj2b

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p
|- .(+) = ( LSSum ` G )
lsmcntz.s
|- ( ph -> S e. ( SubGrp ` G ) )
lsmcntz.t
|- ( ph -> T e. ( SubGrp ` G ) )
lsmcntz.u
|- ( ph -> U e. ( SubGrp ` G ) )
lsmdisj.o
|- .0. = ( 0g ` G )
Assertion lsmdisj2b
|- ( ph -> ( ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )

Proof

Step Hyp Ref Expression
1 lsmcntz.p
 |-  .(+) = ( LSSum ` G )
2 lsmcntz.s
 |-  ( ph -> S e. ( SubGrp ` G ) )
3 lsmcntz.t
 |-  ( ph -> T e. ( SubGrp ` G ) )
4 lsmcntz.u
 |-  ( ph -> U e. ( SubGrp ` G ) )
5 lsmdisj.o
 |-  .0. = ( 0g ` G )
6 incom
 |-  ( S i^i ( T .(+) U ) ) = ( ( T .(+) U ) i^i S )
7 3 adantr
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) )
8 2 adantr
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) )
9 4 adantr
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) )
10 incom
 |-  ( T i^i ( S .(+) U ) ) = ( ( S .(+) U ) i^i T )
11 simprl
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } )
12 10 11 eqtrid
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i ( S .(+) U ) ) = { .0. } )
13 simprr
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } )
14 1 7 8 9 5 12 13 lsmdisj2r
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( T .(+) U ) i^i S ) = { .0. } )
15 6 14 eqtrid
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } )
16 incom
 |-  ( T i^i U ) = ( U i^i T )
17 1 8 9 7 5 11 lsmdisj
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( U i^i T ) = { .0. } ) )
18 17 simprd
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( U i^i T ) = { .0. } )
19 16 18 eqtrid
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } )
20 15 19 jca
 |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) )
21 2 adantr
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) )
22 3 adantr
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) )
23 4 adantr
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) )
24 simprl
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } )
25 simprr
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } )
26 1 21 22 23 5 24 25 lsmdisj2r
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } )
27 1 21 22 23 5 24 lsmdisjr
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) )
28 27 simprd
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } )
29 26 28 jca
 |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) )
30 20 29 impbida
 |-  ( ph -> ( ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )