| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmcntz.p | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmcntz.s | 
							 |-  ( ph -> S e. ( SubGrp ` G ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmcntz.t | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmcntz.u | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmdisj.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							lsmdisj.i | 
							 |-  ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) | 
						
						
							| 7 | 
							
								
							 | 
							lsmdisj2.i | 
							 |-  ( ph -> ( S i^i T ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							lsmdisj3.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 9 | 
							
								
							 | 
							lsmdisj3.s | 
							 |-  ( ph -> S C_ ( Z ` T ) )  | 
						
						
							| 10 | 
							
								1 8
							 | 
							lsmcom2 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ S C_ ( Z ` T ) ) -> ( S .(+) T ) = ( T .(+) S ) )  | 
						
						
							| 11 | 
							
								2 3 9 10
							 | 
							syl3anc | 
							 |-  ( ph -> ( S .(+) T ) = ( T .(+) S ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ineq1d | 
							 |-  ( ph -> ( ( S .(+) T ) i^i U ) = ( ( T .(+) S ) i^i U ) )  | 
						
						
							| 13 | 
							
								12 6
							 | 
							eqtr3d | 
							 |-  ( ph -> ( ( T .(+) S ) i^i U ) = { .0. } ) | 
						
						
							| 14 | 
							
								
							 | 
							incom | 
							 |-  ( T i^i S ) = ( S i^i T )  | 
						
						
							| 15 | 
							
								14 7
							 | 
							eqtrid | 
							 |-  ( ph -> ( T i^i S ) = { .0. } ) | 
						
						
							| 16 | 
							
								1 3 2 4 5 13 15
							 | 
							lsmdisj2 | 
							 |-  ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |