Metamath Proof Explorer


Theorem lsmdisj3a

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p
|- .(+) = ( LSSum ` G )
lsmcntz.s
|- ( ph -> S e. ( SubGrp ` G ) )
lsmcntz.t
|- ( ph -> T e. ( SubGrp ` G ) )
lsmcntz.u
|- ( ph -> U e. ( SubGrp ` G ) )
lsmdisj.o
|- .0. = ( 0g ` G )
lsmdisj3b.z
|- Z = ( Cntz ` G )
lsmdisj3a.2
|- ( ph -> S C_ ( Z ` T ) )
Assertion lsmdisj3a
|- ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )

Proof

Step Hyp Ref Expression
1 lsmcntz.p
 |-  .(+) = ( LSSum ` G )
2 lsmcntz.s
 |-  ( ph -> S e. ( SubGrp ` G ) )
3 lsmcntz.t
 |-  ( ph -> T e. ( SubGrp ` G ) )
4 lsmcntz.u
 |-  ( ph -> U e. ( SubGrp ` G ) )
5 lsmdisj.o
 |-  .0. = ( 0g ` G )
6 lsmdisj3b.z
 |-  Z = ( Cntz ` G )
7 lsmdisj3a.2
 |-  ( ph -> S C_ ( Z ` T ) )
8 1 6 lsmcom2
 |-  ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ S C_ ( Z ` T ) ) -> ( S .(+) T ) = ( T .(+) S ) )
9 2 3 7 8 syl3anc
 |-  ( ph -> ( S .(+) T ) = ( T .(+) S ) )
10 9 ineq1d
 |-  ( ph -> ( ( S .(+) T ) i^i U ) = ( ( T .(+) S ) i^i U ) )
11 10 eqeq1d
 |-  ( ph -> ( ( ( S .(+) T ) i^i U ) = { .0. } <-> ( ( T .(+) S ) i^i U ) = { .0. } ) )
12 incom
 |-  ( S i^i T ) = ( T i^i S )
13 12 a1i
 |-  ( ph -> ( S i^i T ) = ( T i^i S ) )
14 13 eqeq1d
 |-  ( ph -> ( ( S i^i T ) = { .0. } <-> ( T i^i S ) = { .0. } ) )
15 11 14 anbi12d
 |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( ( T .(+) S ) i^i U ) = { .0. } /\ ( T i^i S ) = { .0. } ) ) )
16 1 3 2 4 5 lsmdisj2a
 |-  ( ph -> ( ( ( ( T .(+) S ) i^i U ) = { .0. } /\ ( T i^i S ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )
17 15 16 bitrd
 |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )