| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmfval.v |  |-  B = ( Base ` G ) | 
						
							| 2 |  | lsmfval.a |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | lsmfval.s |  |-  .(+) = ( LSSum ` G ) | 
						
							| 4 |  | elex |  |-  ( G e. V -> G e. _V ) | 
						
							| 5 |  | fveq2 |  |-  ( w = G -> ( Base ` w ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( w = G -> ( Base ` w ) = B ) | 
						
							| 7 | 6 | pweqd |  |-  ( w = G -> ~P ( Base ` w ) = ~P B ) | 
						
							| 8 |  | fveq2 |  |-  ( w = G -> ( +g ` w ) = ( +g ` G ) ) | 
						
							| 9 | 8 2 | eqtr4di |  |-  ( w = G -> ( +g ` w ) = .+ ) | 
						
							| 10 | 9 | oveqd |  |-  ( w = G -> ( x ( +g ` w ) y ) = ( x .+ y ) ) | 
						
							| 11 | 10 | mpoeq3dv |  |-  ( w = G -> ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) = ( x e. t , y e. u |-> ( x .+ y ) ) ) | 
						
							| 12 | 11 | rneqd |  |-  ( w = G -> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) = ran ( x e. t , y e. u |-> ( x .+ y ) ) ) | 
						
							| 13 | 7 7 12 | mpoeq123dv |  |-  ( w = G -> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) | 
						
							| 14 |  | df-lsm |  |-  LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) | 
						
							| 15 | 1 | fvexi |  |-  B e. _V | 
						
							| 16 | 15 | pwex |  |-  ~P B e. _V | 
						
							| 17 | 16 16 | mpoex |  |-  ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) e. _V | 
						
							| 18 | 13 14 17 | fvmpt |  |-  ( G e. _V -> ( LSSum ` G ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) | 
						
							| 19 | 4 18 | syl |  |-  ( G e. V -> ( LSSum ` G ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) | 
						
							| 20 | 3 19 | eqtrid |  |-  ( G e. V -> .(+) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |