| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmmod.p | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` G ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( oppG ` G ) = ( oppG ` G )  | 
						
						
							| 4 | 
							
								3
							 | 
							oppgsubg | 
							 |-  ( SubGrp ` G ) = ( SubGrp ` ( oppG ` G ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eleqtrdi | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` ( oppG ` G ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								6 4
							 | 
							eleqtrdi | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` ( oppG ` G ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` G ) )  | 
						
						
							| 9 | 
							
								8 4
							 | 
							eleqtrdi | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` ( oppG ` G ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U C_ S )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							lsmmod | 
							 |-  ( ( ( U e. ( SubGrp ` ( oppG ` G ) ) /\ T e. ( SubGrp ` ( oppG ` G ) ) /\ S e. ( SubGrp ` ( oppG ` G ) ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) )  | 
						
						
							| 13 | 
							
								5 7 9 10 12
							 | 
							syl31anc | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomd | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							incom | 
							 |-  ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) )  | 
						
						
							| 16 | 
							
								
							 | 
							incom | 
							 |-  ( T i^i S ) = ( S i^i T )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2i | 
							 |-  ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) )  | 
						
						
							| 18 | 
							
								14 15 17
							 | 
							3eqtr3g | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) )  | 
						
						
							| 19 | 
							
								3 1
							 | 
							oppglsm | 
							 |-  ( U ( LSSum ` ( oppG ` G ) ) T ) = ( T .(+) U )  | 
						
						
							| 20 | 
							
								19
							 | 
							ineq2i | 
							 |-  ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( S i^i ( T .(+) U ) )  | 
						
						
							| 21 | 
							
								3 1
							 | 
							oppglsm | 
							 |-  ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) = ( ( S i^i T ) .(+) U )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							3eqtr3g | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( T .(+) U ) ) = ( ( S i^i T ) .(+) U ) )  |