Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsp2.v |
|- V = ( Base ` W ) |
2 |
|
lsmsp2.n |
|- N = ( LSpan ` W ) |
3 |
|
lsmsp2.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
simp1 |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> W e. LMod ) |
5 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
6 |
1 5 2
|
lspcl |
|- ( ( W e. LMod /\ T C_ V ) -> ( N ` T ) e. ( LSubSp ` W ) ) |
7 |
6
|
3adant3 |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` T ) e. ( LSubSp ` W ) ) |
8 |
1 5 2
|
lspcl |
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
9 |
8
|
3adant2 |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
10 |
5 2 3
|
lsmsp |
|- ( ( W e. LMod /\ ( N ` T ) e. ( LSubSp ` W ) /\ ( N ` U ) e. ( LSubSp ` W ) ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
11 |
4 7 9 10
|
syl3anc |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
12 |
1 2
|
lspun |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` ( T u. U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
13 |
11 12
|
eqtr4d |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |