Metamath Proof Explorer


Theorem lsmss1b

Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p
|- .(+) = ( LSSum ` G )
Assertion lsmss1b
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U <-> ( T .(+) U ) = U ) )

Proof

Step Hyp Ref Expression
1 lsmub1.p
 |-  .(+) = ( LSSum ` G )
2 1 lsmss1
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( T .(+) U ) = U )
3 2 3expia
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U -> ( T .(+) U ) = U ) )
4 1 lsmub1
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) )
5 sseq2
 |-  ( ( T .(+) U ) = U -> ( T C_ ( T .(+) U ) <-> T C_ U ) )
6 4 5 syl5ibcom
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T .(+) U ) = U -> T C_ U ) )
7 3 6 impbid
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U <-> ( T .(+) U ) = U ) )