Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsp2.v |
|- V = ( Base ` W ) |
2 |
|
lsmsp2.n |
|- N = ( LSpan ` W ) |
3 |
|
lsmsp2.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
lsmssspx.t |
|- ( ph -> T C_ V ) |
5 |
|
lsmssspx.u |
|- ( ph -> U C_ V ) |
6 |
|
lsmssspx.w |
|- ( ph -> W e. LMod ) |
7 |
1 2
|
lspssv |
|- ( ( W e. LMod /\ T C_ V ) -> ( N ` T ) C_ V ) |
8 |
6 4 7
|
syl2anc |
|- ( ph -> ( N ` T ) C_ V ) |
9 |
1 2
|
lspssid |
|- ( ( W e. LMod /\ T C_ V ) -> T C_ ( N ` T ) ) |
10 |
6 4 9
|
syl2anc |
|- ( ph -> T C_ ( N ` T ) ) |
11 |
1 3
|
lsmless1x |
|- ( ( ( W e. LMod /\ ( N ` T ) C_ V /\ U C_ V ) /\ T C_ ( N ` T ) ) -> ( T .(+) U ) C_ ( ( N ` T ) .(+) U ) ) |
12 |
6 8 5 10 11
|
syl31anc |
|- ( ph -> ( T .(+) U ) C_ ( ( N ` T ) .(+) U ) ) |
13 |
1 2
|
lspssv |
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V ) |
14 |
6 5 13
|
syl2anc |
|- ( ph -> ( N ` U ) C_ V ) |
15 |
1 2
|
lspssid |
|- ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) ) |
16 |
6 5 15
|
syl2anc |
|- ( ph -> U C_ ( N ` U ) ) |
17 |
1 3
|
lsmless2x |
|- ( ( ( W e. LMod /\ ( N ` T ) C_ V /\ ( N ` U ) C_ V ) /\ U C_ ( N ` U ) ) -> ( ( N ` T ) .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
18 |
6 8 14 16 17
|
syl31anc |
|- ( ph -> ( ( N ` T ) .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
19 |
12 18
|
sstrd |
|- ( ph -> ( T .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
20 |
1 2 3
|
lsmsp2 |
|- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |
21 |
6 4 5 20
|
syl3anc |
|- ( ph -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |
22 |
19 21
|
sseqtrd |
|- ( ph -> ( T .(+) U ) C_ ( N ` ( T u. U ) ) ) |