Metamath Proof Explorer


Theorem lsmsubg

Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p
|- .(+) = ( LSSum ` G )
lsmsubg.z
|- Z = ( Cntz ` G )
Assertion lsmsubg
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) )

Proof

Step Hyp Ref Expression
1 lsmsubg.p
 |-  .(+) = ( LSSum ` G )
2 lsmsubg.z
 |-  Z = ( Cntz ` G )
3 simp1
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubGrp ` G ) )
4 subgsubm
 |-  ( T e. ( SubGrp ` G ) -> T e. ( SubMnd ` G ) )
5 3 4 syl
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubMnd ` G ) )
6 simp2
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubGrp ` G ) )
7 subgsubm
 |-  ( U e. ( SubGrp ` G ) -> U e. ( SubMnd ` G ) )
8 6 7 syl
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubMnd ` G ) )
9 simp3
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( Z ` U ) )
10 1 2 lsmsubm
 |-  ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) )
11 5 8 9 10 syl3anc
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) )
12 eqid
 |-  ( +g ` G ) = ( +g ` G )
13 12 1 lsmelval
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) )
14 13 3adant3
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) )
15 3 adantr
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T e. ( SubGrp ` G ) )
16 subgrcl
 |-  ( T e. ( SubGrp ` G ) -> G e. Grp )
17 15 16 syl
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> G e. Grp )
18 eqid
 |-  ( Base ` G ) = ( Base ` G )
19 18 subgss
 |-  ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) )
20 15 19 syl
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Base ` G ) )
21 simprl
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. T )
22 20 21 sseldd
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. ( Base ` G ) )
23 6 adantr
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U e. ( SubGrp ` G ) )
24 18 subgss
 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )
25 23 24 syl
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U C_ ( Base ` G ) )
26 simprr
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. U )
27 25 26 sseldd
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. ( Base ` G ) )
28 eqid
 |-  ( invg ` G ) = ( invg ` G )
29 18 12 28 grpinvadd
 |-  ( ( G e. Grp /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) )
30 17 22 27 29 syl3anc
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) )
31 9 adantr
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Z ` U ) )
32 28 subginvcl
 |-  ( ( T e. ( SubGrp ` G ) /\ a e. T ) -> ( ( invg ` G ) ` a ) e. T )
33 15 21 32 syl2anc
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. T )
34 31 33 sseldd
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. ( Z ` U ) )
35 28 subginvcl
 |-  ( ( U e. ( SubGrp ` G ) /\ b e. U ) -> ( ( invg ` G ) ` b ) e. U )
36 23 26 35 syl2anc
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` b ) e. U )
37 12 2 cntzi
 |-  ( ( ( ( invg ` G ) ` a ) e. ( Z ` U ) /\ ( ( invg ` G ) ` b ) e. U ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) )
38 34 36 37 syl2anc
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) )
39 30 38 eqtr4d
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) )
40 12 1 lsmelvali
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( ( ( invg ` G ) ` a ) e. T /\ ( ( invg ` G ) ` b ) e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) )
41 15 23 33 36 40 syl22anc
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) )
42 39 41 eqeltrd
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) )
43 fveq2
 |-  ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) )
44 43 eleq1d
 |-  ( x = ( a ( +g ` G ) b ) -> ( ( ( invg ` G ) ` x ) e. ( T .(+) U ) <-> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) ) )
45 42 44 syl5ibrcom
 |-  ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) )
46 45 rexlimdvva
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. U x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) )
47 14 46 sylbid
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) )
48 47 ralrimiv
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) )
49 3 16 syl
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> G e. Grp )
50 28 issubg3
 |-  ( G e. Grp -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) )
51 49 50 syl
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) )
52 11 48 51 mpbir2and
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) )