Step |
Hyp |
Ref |
Expression |
1 |
|
lsmless2.v |
|- B = ( Base ` G ) |
2 |
|
lsmless2.s |
|- .(+) = ( LSSum ` G ) |
3 |
|
submrcl |
|- ( U e. ( SubMnd ` G ) -> G e. Mnd ) |
4 |
3
|
ad2antlr |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> G e. Mnd ) |
5 |
|
simpll |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> T C_ B ) |
6 |
|
simpr |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. T ) |
7 |
5 6
|
sseldd |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. B ) |
8 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
9 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
10 |
1 8 9
|
mndrid |
|- ( ( G e. Mnd /\ x e. B ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
11 |
4 7 10
|
syl2anc |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
12 |
1
|
submss |
|- ( U e. ( SubMnd ` G ) -> U C_ B ) |
13 |
12
|
ad2antlr |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> U C_ B ) |
14 |
9
|
subm0cl |
|- ( U e. ( SubMnd ` G ) -> ( 0g ` G ) e. U ) |
15 |
14
|
ad2antlr |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( 0g ` G ) e. U ) |
16 |
1 8 2
|
lsmelvalix |
|- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( x e. T /\ ( 0g ` G ) e. U ) ) -> ( x ( +g ` G ) ( 0g ` G ) ) e. ( T .(+) U ) ) |
17 |
4 5 13 6 15 16
|
syl32anc |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> ( x ( +g ` G ) ( 0g ` G ) ) e. ( T .(+) U ) ) |
18 |
11 17
|
eqeltrrd |
|- ( ( ( T C_ B /\ U e. ( SubMnd ` G ) ) /\ x e. T ) -> x e. ( T .(+) U ) ) |
19 |
18
|
ex |
|- ( ( T C_ B /\ U e. ( SubMnd ` G ) ) -> ( x e. T -> x e. ( T .(+) U ) ) ) |
20 |
19
|
ssrdv |
|- ( ( T C_ B /\ U e. ( SubMnd ` G ) ) -> T C_ ( T .(+) U ) ) |