Description: Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
Assertion | lsmunss | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T u. U ) C_ ( T .(+) U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
2 | 1 | lsmub1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
3 | 1 | lsmub2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( T .(+) U ) ) |
4 | 2 3 | unssd | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T u. U ) C_ ( T .(+) U ) ) |