Metamath Proof Explorer


Theorem lsmval

Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmval.v
|- B = ( Base ` G )
lsmval.a
|- .+ = ( +g ` G )
lsmval.p
|- .(+) = ( LSSum ` G )
Assertion lsmval
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) )

Proof

Step Hyp Ref Expression
1 lsmval.v
 |-  B = ( Base ` G )
2 lsmval.a
 |-  .+ = ( +g ` G )
3 lsmval.p
 |-  .(+) = ( LSSum ` G )
4 subgrcl
 |-  ( T e. ( SubGrp ` G ) -> G e. Grp )
5 1 subgss
 |-  ( T e. ( SubGrp ` G ) -> T C_ B )
6 1 subgss
 |-  ( U e. ( SubGrp ` G ) -> U C_ B )
7 1 2 3 lsmvalx
 |-  ( ( G e. Grp /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) )
8 4 5 6 7 syl2an3an
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) )