Step |
Hyp |
Ref |
Expression |
1 |
|
lspabs2.v |
|- V = ( Base ` W ) |
2 |
|
lspabs2.p |
|- .+ = ( +g ` W ) |
3 |
|
lspabs2.o |
|- .0. = ( 0g ` W ) |
4 |
|
lspabs2.n |
|- N = ( LSpan ` W ) |
5 |
|
lspabs2.w |
|- ( ph -> W e. LVec ) |
6 |
|
lspabs2.x |
|- ( ph -> X e. V ) |
7 |
|
lspabs2.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
8 |
|
lspabs2.e |
|- ( ph -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
5 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
1 4
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
12 |
10 6 11
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
13 |
7
|
eldifad |
|- ( ph -> Y e. V ) |
14 |
1 4
|
lspsnsubg |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
15 |
10 13 14
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
16 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
17 |
16
|
lsmub2 |
|- ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) -> ( N ` { Y } ) C_ ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
18 |
12 15 17
|
syl2anc |
|- ( ph -> ( N ` { Y } ) C_ ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
19 |
8
|
oveq2d |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { ( X .+ Y ) } ) ) ) |
20 |
16
|
lsmidm |
|- ( ( N ` { X } ) e. ( SubGrp ` W ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
21 |
12 20
|
syl |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
22 |
1 2 4 10 6 13
|
lspprabs |
|- ( ph -> ( N ` { X , ( X .+ Y ) } ) = ( N ` { X , Y } ) ) |
23 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
24 |
10 6 13 23
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. V ) |
25 |
1 4 16 10 6 24
|
lsmpr |
|- ( ph -> ( N ` { X , ( X .+ Y ) } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { ( X .+ Y ) } ) ) ) |
26 |
1 4 16 10 6 13
|
lsmpr |
|- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
27 |
22 25 26
|
3eqtr3d |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { ( X .+ Y ) } ) ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
28 |
19 21 27
|
3eqtr3rd |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` { X } ) ) |
29 |
18 28
|
sseqtrd |
|- ( ph -> ( N ` { Y } ) C_ ( N ` { X } ) ) |
30 |
1 3 4 5 7 6
|
lspsncmp |
|- ( ph -> ( ( N ` { Y } ) C_ ( N ` { X } ) <-> ( N ` { Y } ) = ( N ` { X } ) ) ) |
31 |
29 30
|
mpbid |
|- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |
32 |
31
|
eqcomd |
|- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |