Step |
Hyp |
Ref |
Expression |
1 |
|
lspabs2.v |
|- V = ( Base ` W ) |
2 |
|
lspabs2.p |
|- .+ = ( +g ` W ) |
3 |
|
lspabs2.o |
|- .0. = ( 0g ` W ) |
4 |
|
lspabs2.n |
|- N = ( LSpan ` W ) |
5 |
|
lspabs2.w |
|- ( ph -> W e. LVec ) |
6 |
|
lspabs2.x |
|- ( ph -> X e. V ) |
7 |
|
lspabs3.y |
|- ( ph -> Y e. V ) |
8 |
|
lspabs3.xy |
|- ( ph -> ( X .+ Y ) =/= .0. ) |
9 |
|
lspabs3.e |
|- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
10 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
11 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
12 |
5 11
|
syl |
|- ( ph -> W e. LMod ) |
13 |
1 10 4
|
lspsncl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
14 |
12 6 13
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
15 |
1 10 4
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
16 |
12 7 15
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
17 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
18 |
10 17
|
lsmcl |
|- ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) e. ( LSubSp ` W ) ) |
19 |
12 14 16 18
|
syl3anc |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) e. ( LSubSp ` W ) ) |
20 |
1 4
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
21 |
12 6 20
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
22 |
9 21
|
eqeltrrd |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
23 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
24 |
12 6 23
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
25 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ Y e. V ) -> Y e. ( N ` { Y } ) ) |
26 |
12 7 25
|
syl2anc |
|- ( ph -> Y e. ( N ` { Y } ) ) |
27 |
2 17
|
lsmelvali |
|- ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( X e. ( N ` { X } ) /\ Y e. ( N ` { Y } ) ) ) -> ( X .+ Y ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
28 |
21 22 24 26 27
|
syl22anc |
|- ( ph -> ( X .+ Y ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
29 |
10 4 12 19 28
|
lspsnel5a |
|- ( ph -> ( N ` { ( X .+ Y ) } ) C_ ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
30 |
9
|
oveq2d |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
31 |
17
|
lsmidm |
|- ( ( N ` { X } ) e. ( SubGrp ` W ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
32 |
21 31
|
syl |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
33 |
30 32
|
eqtr3d |
|- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` { X } ) ) |
34 |
29 33
|
sseqtrd |
|- ( ph -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X } ) ) |
35 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
36 |
12 6 7 35
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. V ) |
37 |
|
eldifsn |
|- ( ( X .+ Y ) e. ( V \ { .0. } ) <-> ( ( X .+ Y ) e. V /\ ( X .+ Y ) =/= .0. ) ) |
38 |
36 8 37
|
sylanbrc |
|- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |
39 |
1 3 4 5 38 6
|
lspsncmp |
|- ( ph -> ( ( N ` { ( X .+ Y ) } ) C_ ( N ` { X } ) <-> ( N ` { ( X .+ Y ) } ) = ( N ` { X } ) ) ) |
40 |
34 39
|
mpbid |
|- ( ph -> ( N ` { ( X .+ Y ) } ) = ( N ` { X } ) ) |
41 |
40
|
eqcomd |
|- ( ph -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |