Step |
Hyp |
Ref |
Expression |
1 |
|
lspdisjb.v |
|- V = ( Base ` W ) |
2 |
|
lspdisjb.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspdisjb.n |
|- N = ( LSpan ` W ) |
4 |
|
lspdisjb.s |
|- S = ( LSubSp ` W ) |
5 |
|
lspdisjb.w |
|- ( ph -> W e. LVec ) |
6 |
|
lspdisjb.u |
|- ( ph -> U e. S ) |
7 |
|
lspdisjb.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
8 |
5
|
adantr |
|- ( ( ph /\ -. X e. U ) -> W e. LVec ) |
9 |
6
|
adantr |
|- ( ( ph /\ -. X e. U ) -> U e. S ) |
10 |
7
|
eldifad |
|- ( ph -> X e. V ) |
11 |
10
|
adantr |
|- ( ( ph /\ -. X e. U ) -> X e. V ) |
12 |
|
simpr |
|- ( ( ph /\ -. X e. U ) -> -. X e. U ) |
13 |
1 2 3 4 8 9 11 12
|
lspdisj |
|- ( ( ph /\ -. X e. U ) -> ( ( N ` { X } ) i^i U ) = { .0. } ) |
14 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
15 |
7 14
|
syl |
|- ( ph -> X =/= .0. ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> X =/= .0. ) |
17 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
18 |
5 17
|
syl |
|- ( ph -> W e. LMod ) |
19 |
1 3
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
20 |
18 10 19
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
21 |
|
elin |
|- ( X e. ( ( N ` { X } ) i^i U ) <-> ( X e. ( N ` { X } ) /\ X e. U ) ) |
22 |
|
eleq2 |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) <-> X e. { .0. } ) ) |
23 |
|
elsni |
|- ( X e. { .0. } -> X = .0. ) |
24 |
22 23
|
syl6bi |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) -> X = .0. ) ) |
25 |
21 24
|
syl5bir |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( ( X e. ( N ` { X } ) /\ X e. U ) -> X = .0. ) ) |
26 |
25
|
expd |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( N ` { X } ) -> ( X e. U -> X = .0. ) ) ) |
27 |
20 26
|
mpan9 |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X e. U -> X = .0. ) ) |
28 |
27
|
necon3ad |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X =/= .0. -> -. X e. U ) ) |
29 |
16 28
|
mpd |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> -. X e. U ) |
30 |
13 29
|
impbida |
|- ( ph -> ( -. X e. U <-> ( ( N ` { X } ) i^i U ) = { .0. } ) ) |