| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspdisjb.v |
|- V = ( Base ` W ) |
| 2 |
|
lspdisjb.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspdisjb.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspdisjb.s |
|- S = ( LSubSp ` W ) |
| 5 |
|
lspdisjb.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lspdisjb.u |
|- ( ph -> U e. S ) |
| 7 |
|
lspdisjb.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ -. X e. U ) -> W e. LVec ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ -. X e. U ) -> U e. S ) |
| 10 |
7
|
eldifad |
|- ( ph -> X e. V ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ -. X e. U ) -> X e. V ) |
| 12 |
|
simpr |
|- ( ( ph /\ -. X e. U ) -> -. X e. U ) |
| 13 |
1 2 3 4 8 9 11 12
|
lspdisj |
|- ( ( ph /\ -. X e. U ) -> ( ( N ` { X } ) i^i U ) = { .0. } ) |
| 14 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
| 15 |
7 14
|
syl |
|- ( ph -> X =/= .0. ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> X =/= .0. ) |
| 17 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 18 |
5 17
|
syl |
|- ( ph -> W e. LMod ) |
| 19 |
1 3
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 20 |
18 10 19
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
| 21 |
|
elin |
|- ( X e. ( ( N ` { X } ) i^i U ) <-> ( X e. ( N ` { X } ) /\ X e. U ) ) |
| 22 |
|
eleq2 |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) <-> X e. { .0. } ) ) |
| 23 |
|
elsni |
|- ( X e. { .0. } -> X = .0. ) |
| 24 |
22 23
|
biimtrdi |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) -> X = .0. ) ) |
| 25 |
21 24
|
biimtrrid |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( ( X e. ( N ` { X } ) /\ X e. U ) -> X = .0. ) ) |
| 26 |
25
|
expd |
|- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( N ` { X } ) -> ( X e. U -> X = .0. ) ) ) |
| 27 |
20 26
|
mpan9 |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X e. U -> X = .0. ) ) |
| 28 |
27
|
necon3ad |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X =/= .0. -> -. X e. U ) ) |
| 29 |
16 28
|
mpd |
|- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> -. X e. U ) |
| 30 |
13 29
|
impbida |
|- ( ph -> ( -. X e. U <-> ( ( N ` { X } ) i^i U ) = { .0. } ) ) |