| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspexch.v |
|- V = ( Base ` W ) |
| 2 |
|
lspexch.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
lspexch.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspexch.w |
|- ( ph -> W e. LVec ) |
| 5 |
|
lspexch.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 6 |
|
lspexch.y |
|- ( ph -> Y e. V ) |
| 7 |
|
lspexch.z |
|- ( ph -> Z e. V ) |
| 8 |
|
lspexch.q |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 9 |
|
lspexch.e |
|- ( ph -> X e. ( N ` { Y , Z } ) ) |
| 10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 11 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 12 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 13 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 14 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 15 |
4 14
|
syl |
|- ( ph -> W e. LMod ) |
| 16 |
1 10 11 12 13 3 15 6 7
|
lspprel |
|- ( ph -> ( X e. ( N ` { Y , Z } ) <-> E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) ) |
| 17 |
9 16
|
mpbid |
|- ( ph -> E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 18 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 19 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 20 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LVec ) |
| 21 |
20 14
|
syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LMod ) |
| 22 |
|
simp2r |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
| 23 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X e. ( V \ { .0. } ) ) |
| 24 |
23
|
eldifad |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X e. V ) |
| 25 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Z e. V ) |
| 26 |
1 10 18 13 11 12 19 21 22 24 25
|
lmodsubvs |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) |
| 27 |
|
simp3 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 28 |
27
|
eqcomd |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) |
| 29 |
15
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LMod ) |
| 30 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 31 |
29 30
|
syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. Grp ) |
| 32 |
1 11 13 12
|
lmodvscl |
|- ( ( W e. LMod /\ k e. ( Base ` ( Scalar ` W ) ) /\ Z e. V ) -> ( k ( .s ` W ) Z ) e. V ) |
| 33 |
21 22 25 32
|
syl3anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Z ) e. V ) |
| 34 |
|
simp2l |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j e. ( Base ` ( Scalar ` W ) ) ) |
| 35 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y e. V ) |
| 36 |
1 11 13 12
|
lmodvscl |
|- ( ( W e. LMod /\ j e. ( Base ` ( Scalar ` W ) ) /\ Y e. V ) -> ( j ( .s ` W ) Y ) e. V ) |
| 37 |
21 34 35 36
|
syl3anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( j ( .s ` W ) Y ) e. V ) |
| 38 |
1 10 18
|
grpsubadd |
|- ( ( W e. Grp /\ ( X e. V /\ ( k ( .s ` W ) Z ) e. V /\ ( j ( .s ` W ) Y ) e. V ) ) -> ( ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) ) |
| 39 |
31 24 33 37 38
|
syl13anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) ) |
| 40 |
28 39
|
mpbird |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) ) |
| 41 |
26 40
|
eqtr3d |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) ) |
| 42 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 43 |
|
eqid |
|- ( invr ` ( Scalar ` W ) ) = ( invr ` ( Scalar ` W ) ) |
| 44 |
8
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 45 |
20
|
adantr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> W e. LVec ) |
| 46 |
25
|
adantr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> Z e. V ) |
| 47 |
27
|
adantr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 48 |
|
oveq1 |
|- ( j = ( 0g ` ( Scalar ` W ) ) -> ( j ( .s ` W ) Y ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ) |
| 49 |
48
|
oveq1d |
|- ( j = ( 0g ` ( Scalar ` W ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 50 |
1 11 13 42 2
|
lmod0vs |
|- ( ( W e. LMod /\ Y e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 51 |
21 35 50
|
syl2anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 52 |
51
|
oveq1d |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 53 |
1 10 2
|
lmod0vlid |
|- ( ( W e. LMod /\ ( k ( .s ` W ) Z ) e. V ) -> ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 54 |
21 33 53
|
syl2anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 55 |
52 54
|
eqtrd |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 56 |
49 55
|
sylan9eqr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 57 |
47 56
|
eqtrd |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X = ( k ( .s ` W ) Z ) ) |
| 58 |
1 13 11 12 3 21 22 25
|
ellspsni |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 59 |
58
|
adantr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 60 |
57 59
|
eqeltrd |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X e. ( N ` { Z } ) ) |
| 61 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
| 62 |
23 61
|
syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X =/= .0. ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X =/= .0. ) |
| 64 |
1 2 3 45 46 60 63
|
lspsneleq |
|- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( N ` { X } ) = ( N ` { Z } ) ) |
| 65 |
64
|
ex |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( j = ( 0g ` ( Scalar ` W ) ) -> ( N ` { X } ) = ( N ` { Z } ) ) ) |
| 66 |
65
|
necon3d |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( N ` { X } ) =/= ( N ` { Z } ) -> j =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 67 |
44 66
|
mpd |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j =/= ( 0g ` ( Scalar ` W ) ) ) |
| 68 |
|
eldifsn |
|- ( j e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) <-> ( j e. ( Base ` ( Scalar ` W ) ) /\ j =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 69 |
34 67 68
|
sylanbrc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 70 |
11
|
lmodfgrp |
|- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 71 |
29 70
|
syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( Scalar ` W ) e. Grp ) |
| 72 |
12 19
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 73 |
71 22 72
|
syl2anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 74 |
1 11 13 12
|
lmodvscl |
|- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ Z e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) |
| 75 |
21 73 25 74
|
syl3anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) |
| 76 |
1 10
|
lmodvacl |
|- ( ( W e. LMod /\ X e. V /\ ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. V ) |
| 77 |
21 24 75 76
|
syl3anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. V ) |
| 78 |
1 13 11 12 42 43 20 69 77 35
|
lvecinv |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> Y = ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) ) ) |
| 79 |
41 78
|
mpbid |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y = ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) ) |
| 80 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 81 |
1 80 3 21 24 25
|
lspprcl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( N ` { X , Z } ) e. ( LSubSp ` W ) ) |
| 82 |
11
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 83 |
20 82
|
syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( Scalar ` W ) e. DivRing ) |
| 84 |
12 42 43
|
drnginvrcl |
|- ( ( ( Scalar ` W ) e. DivRing /\ j e. ( Base ` ( Scalar ` W ) ) /\ j =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) ) |
| 85 |
83 34 67 84
|
syl3anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) ) |
| 86 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 87 |
1 11 13 86
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 88 |
21 24 87
|
syl2anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 89 |
88
|
oveq1d |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) |
| 90 |
11
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 91 |
12 86
|
ringidcl |
|- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 92 |
21 90 91
|
3syl |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 93 |
1 10 13 11 12 3 21 92 73 24 25
|
lsppreli |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) |
| 94 |
89 93
|
eqeltrrd |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) |
| 95 |
11 13 12 80
|
lssvscl |
|- ( ( ( W e. LMod /\ ( N ` { X , Z } ) e. ( LSubSp ` W ) ) /\ ( ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) /\ ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) e. ( N ` { X , Z } ) ) |
| 96 |
21 81 85 94 95
|
syl22anc |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) e. ( N ` { X , Z } ) ) |
| 97 |
79 96
|
eqeltrd |
|- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y e. ( N ` { X , Z } ) ) |
| 98 |
97
|
3exp |
|- ( ph -> ( ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) -> Y e. ( N ` { X , Z } ) ) ) ) |
| 99 |
98
|
rexlimdvv |
|- ( ph -> ( E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) -> Y e. ( N ` { X , Z } ) ) ) |
| 100 |
17 99
|
mpd |
|- ( ph -> Y e. ( N ` { X , Z } ) ) |