Step |
Hyp |
Ref |
Expression |
1 |
|
lspexchn1.v |
|- V = ( Base ` W ) |
2 |
|
lspexchn1.n |
|- N = ( LSpan ` W ) |
3 |
|
lspexchn1.w |
|- ( ph -> W e. LVec ) |
4 |
|
lspexchn1.x |
|- ( ph -> X e. V ) |
5 |
|
lspexchn1.y |
|- ( ph -> Y e. V ) |
6 |
|
lspexchn1.z |
|- ( ph -> Z e. V ) |
7 |
|
lspexchn1.q |
|- ( ph -> -. Y e. ( N ` { Z } ) ) |
8 |
|
lspexchn1.e |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
9 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
10 |
3
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> W e. LVec ) |
11 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
12 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
13 |
3 12
|
syl |
|- ( ph -> W e. LMod ) |
14 |
1 11 2
|
lspsncl |
|- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
15 |
13 6 14
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
16 |
9 11 13 15 5 7
|
lssneln0 |
|- ( ph -> Y e. ( V \ { ( 0g ` W ) } ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( V \ { ( 0g ` W ) } ) ) |
18 |
4
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. V ) |
19 |
6
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Z e. V ) |
20 |
1 2 13 5 6 7
|
lspsnne2 |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
22 |
|
simpr |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( N ` { X , Z } ) ) |
23 |
1 9 2 10 17 18 19 21 22
|
lspexch |
|- ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. ( N ` { Y , Z } ) ) |
24 |
8 23
|
mtand |
|- ( ph -> -. Y e. ( N ` { X , Z } ) ) |