Metamath Proof Explorer


Theorem lspexchn1

Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspexchn1.v
|- V = ( Base ` W )
lspexchn1.n
|- N = ( LSpan ` W )
lspexchn1.w
|- ( ph -> W e. LVec )
lspexchn1.x
|- ( ph -> X e. V )
lspexchn1.y
|- ( ph -> Y e. V )
lspexchn1.z
|- ( ph -> Z e. V )
lspexchn1.q
|- ( ph -> -. Y e. ( N ` { Z } ) )
lspexchn1.e
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
Assertion lspexchn1
|- ( ph -> -. Y e. ( N ` { X , Z } ) )

Proof

Step Hyp Ref Expression
1 lspexchn1.v
 |-  V = ( Base ` W )
2 lspexchn1.n
 |-  N = ( LSpan ` W )
3 lspexchn1.w
 |-  ( ph -> W e. LVec )
4 lspexchn1.x
 |-  ( ph -> X e. V )
5 lspexchn1.y
 |-  ( ph -> Y e. V )
6 lspexchn1.z
 |-  ( ph -> Z e. V )
7 lspexchn1.q
 |-  ( ph -> -. Y e. ( N ` { Z } ) )
8 lspexchn1.e
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
9 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
10 3 adantr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> W e. LVec )
11 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
12 lveclmod
 |-  ( W e. LVec -> W e. LMod )
13 3 12 syl
 |-  ( ph -> W e. LMod )
14 1 11 2 lspsncl
 |-  ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) )
15 13 6 14 syl2anc
 |-  ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) )
16 9 11 13 15 5 7 lssneln0
 |-  ( ph -> Y e. ( V \ { ( 0g ` W ) } ) )
17 16 adantr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( V \ { ( 0g ` W ) } ) )
18 4 adantr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. V )
19 6 adantr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Z e. V )
20 1 2 13 5 6 7 lspsnne2
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
21 20 adantr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) )
22 simpr
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> Y e. ( N ` { X , Z } ) )
23 1 9 2 10 17 18 19 21 22 lspexch
 |-  ( ( ph /\ Y e. ( N ` { X , Z } ) ) -> X e. ( N ` { Y , Z } ) )
24 8 23 mtand
 |-  ( ph -> -. Y e. ( N ` { X , Z } ) )