Step |
Hyp |
Ref |
Expression |
1 |
|
lspextmo.b |
|- B = ( Base ` S ) |
2 |
|
lspextmo.k |
|- K = ( LSpan ` S ) |
3 |
|
eqtr3 |
|- ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> ( g |` X ) = ( h |` X ) ) |
4 |
|
inss1 |
|- ( g i^i h ) C_ g |
5 |
|
dmss |
|- ( ( g i^i h ) C_ g -> dom ( g i^i h ) C_ dom g ) |
6 |
4 5
|
ax-mp |
|- dom ( g i^i h ) C_ dom g |
7 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
8 |
1 7
|
lmhmf |
|- ( g e. ( S LMHom T ) -> g : B --> ( Base ` T ) ) |
9 |
8
|
ad2antrl |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> g : B --> ( Base ` T ) ) |
10 |
9
|
ffnd |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> g Fn B ) |
11 |
10
|
adantrr |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> g Fn B ) |
12 |
11
|
fndmd |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom g = B ) |
13 |
6 12
|
sseqtrid |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) C_ B ) |
14 |
|
simplr |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> ( K ` X ) = B ) |
15 |
|
lmhmlmod1 |
|- ( g e. ( S LMHom T ) -> S e. LMod ) |
16 |
15
|
adantr |
|- ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) -> S e. LMod ) |
17 |
16
|
ad2antrl |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> S e. LMod ) |
18 |
|
eqid |
|- ( LSubSp ` S ) = ( LSubSp ` S ) |
19 |
18
|
lmhmeql |
|- ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) -> dom ( g i^i h ) e. ( LSubSp ` S ) ) |
20 |
19
|
ad2antrl |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) e. ( LSubSp ` S ) ) |
21 |
|
simprr |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> X C_ dom ( g i^i h ) ) |
22 |
18 2
|
lspssp |
|- ( ( S e. LMod /\ dom ( g i^i h ) e. ( LSubSp ` S ) /\ X C_ dom ( g i^i h ) ) -> ( K ` X ) C_ dom ( g i^i h ) ) |
23 |
17 20 21 22
|
syl3anc |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> ( K ` X ) C_ dom ( g i^i h ) ) |
24 |
14 23
|
eqsstrrd |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> B C_ dom ( g i^i h ) ) |
25 |
13 24
|
eqssd |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) = B ) |
26 |
25
|
expr |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( X C_ dom ( g i^i h ) -> dom ( g i^i h ) = B ) ) |
27 |
|
simprr |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> h e. ( S LMHom T ) ) |
28 |
1 7
|
lmhmf |
|- ( h e. ( S LMHom T ) -> h : B --> ( Base ` T ) ) |
29 |
|
ffn |
|- ( h : B --> ( Base ` T ) -> h Fn B ) |
30 |
27 28 29
|
3syl |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> h Fn B ) |
31 |
|
simpll |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> X C_ B ) |
32 |
|
fnreseql |
|- ( ( g Fn B /\ h Fn B /\ X C_ B ) -> ( ( g |` X ) = ( h |` X ) <-> X C_ dom ( g i^i h ) ) ) |
33 |
10 30 31 32
|
syl3anc |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( g |` X ) = ( h |` X ) <-> X C_ dom ( g i^i h ) ) ) |
34 |
|
fneqeql |
|- ( ( g Fn B /\ h Fn B ) -> ( g = h <-> dom ( g i^i h ) = B ) ) |
35 |
10 30 34
|
syl2anc |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( g = h <-> dom ( g i^i h ) = B ) ) |
36 |
26 33 35
|
3imtr4d |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( g |` X ) = ( h |` X ) -> g = h ) ) |
37 |
3 36
|
syl5 |
|- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
38 |
37
|
ralrimivva |
|- ( ( X C_ B /\ ( K ` X ) = B ) -> A. g e. ( S LMHom T ) A. h e. ( S LMHom T ) ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
39 |
|
reseq1 |
|- ( g = h -> ( g |` X ) = ( h |` X ) ) |
40 |
39
|
eqeq1d |
|- ( g = h -> ( ( g |` X ) = F <-> ( h |` X ) = F ) ) |
41 |
40
|
rmo4 |
|- ( E* g e. ( S LMHom T ) ( g |` X ) = F <-> A. g e. ( S LMHom T ) A. h e. ( S LMHom T ) ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
42 |
38 41
|
sylibr |
|- ( ( X C_ B /\ ( K ` X ) = B ) -> E* g e. ( S LMHom T ) ( g |` X ) = F ) |