Step |
Hyp |
Ref |
Expression |
1 |
|
lspval.v |
|- V = ( Base ` W ) |
2 |
|
lspval.s |
|- S = ( LSubSp ` W ) |
3 |
|
lspval.n |
|- N = ( LSpan ` W ) |
4 |
1 2 3
|
lspfval |
|- ( W e. LMod -> N = ( s e. ~P V |-> |^| { p e. S | s C_ p } ) ) |
5 |
|
simpl |
|- ( ( W e. LMod /\ s e. ~P V ) -> W e. LMod ) |
6 |
|
ssrab2 |
|- { p e. S | s C_ p } C_ S |
7 |
6
|
a1i |
|- ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } C_ S ) |
8 |
1 2
|
lss1 |
|- ( W e. LMod -> V e. S ) |
9 |
|
elpwi |
|- ( s e. ~P V -> s C_ V ) |
10 |
|
sseq2 |
|- ( p = V -> ( s C_ p <-> s C_ V ) ) |
11 |
10
|
rspcev |
|- ( ( V e. S /\ s C_ V ) -> E. p e. S s C_ p ) |
12 |
8 9 11
|
syl2an |
|- ( ( W e. LMod /\ s e. ~P V ) -> E. p e. S s C_ p ) |
13 |
|
rabn0 |
|- ( { p e. S | s C_ p } =/= (/) <-> E. p e. S s C_ p ) |
14 |
12 13
|
sylibr |
|- ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } =/= (/) ) |
15 |
2
|
lssintcl |
|- ( ( W e. LMod /\ { p e. S | s C_ p } C_ S /\ { p e. S | s C_ p } =/= (/) ) -> |^| { p e. S | s C_ p } e. S ) |
16 |
5 7 14 15
|
syl3anc |
|- ( ( W e. LMod /\ s e. ~P V ) -> |^| { p e. S | s C_ p } e. S ) |
17 |
4 16
|
fmpt3d |
|- ( W e. LMod -> N : ~P V --> S ) |