| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspval.s |  |-  S = ( LSubSp ` W ) | 
						
							| 3 |  | lspval.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 | 1 2 3 | lspfval |  |-  ( W e. LMod -> N = ( s e. ~P V |-> |^| { p e. S | s C_ p } ) ) | 
						
							| 5 |  | simpl |  |-  ( ( W e. LMod /\ s e. ~P V ) -> W e. LMod ) | 
						
							| 6 |  | ssrab2 |  |-  { p e. S | s C_ p } C_ S | 
						
							| 7 | 6 | a1i |  |-  ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } C_ S ) | 
						
							| 8 | 1 2 | lss1 |  |-  ( W e. LMod -> V e. S ) | 
						
							| 9 |  | elpwi |  |-  ( s e. ~P V -> s C_ V ) | 
						
							| 10 |  | sseq2 |  |-  ( p = V -> ( s C_ p <-> s C_ V ) ) | 
						
							| 11 | 10 | rspcev |  |-  ( ( V e. S /\ s C_ V ) -> E. p e. S s C_ p ) | 
						
							| 12 | 8 9 11 | syl2an |  |-  ( ( W e. LMod /\ s e. ~P V ) -> E. p e. S s C_ p ) | 
						
							| 13 |  | rabn0 |  |-  ( { p e. S | s C_ p } =/= (/) <-> E. p e. S s C_ p ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } =/= (/) ) | 
						
							| 15 | 2 | lssintcl |  |-  ( ( W e. LMod /\ { p e. S | s C_ p } C_ S /\ { p e. S | s C_ p } =/= (/) ) -> |^| { p e. S | s C_ p } e. S ) | 
						
							| 16 | 5 7 14 15 | syl3anc |  |-  ( ( W e. LMod /\ s e. ~P V ) -> |^| { p e. S | s C_ p } e. S ) | 
						
							| 17 | 4 16 | fmpt3d |  |-  ( W e. LMod -> N : ~P V --> S ) |