| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspid.s |
|- S = ( LSubSp ` W ) |
| 2 |
|
lspid.n |
|- N = ( LSpan ` W ) |
| 3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 4 |
3 1
|
lssss |
|- ( U e. S -> U C_ ( Base ` W ) ) |
| 5 |
3 1 2
|
lspval |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |
| 6 |
4 5
|
sylan2 |
|- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |
| 7 |
|
intmin |
|- ( U e. S -> |^| { t e. S | U C_ t } = U ) |
| 8 |
7
|
adantl |
|- ( ( W e. LMod /\ U e. S ) -> |^| { t e. S | U C_ t } = U ) |
| 9 |
6 8
|
eqtrd |
|- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |