Metamath Proof Explorer


Theorem lspidm

Description: The span of a set of vectors is idempotent. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v
|- V = ( Base ` W )
lspss.n
|- N = ( LSpan ` W )
Assertion lspidm
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` ( N ` U ) ) = ( N ` U ) )

Proof

Step Hyp Ref Expression
1 lspss.v
 |-  V = ( Base ` W )
2 lspss.n
 |-  N = ( LSpan ` W )
3 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
4 1 3 2 lspcl
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) )
5 3 2 lspid
 |-  ( ( W e. LMod /\ ( N ` U ) e. ( LSubSp ` W ) ) -> ( N ` ( N ` U ) ) = ( N ` U ) )
6 4 5 syldan
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` ( N ` U ) ) = ( N ` U ) )