| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspindp3.v |
|- V = ( Base ` W ) |
| 2 |
|
lspindp3.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lspindp3.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
lspindp3.n |
|- N = ( LSpan ` W ) |
| 5 |
|
lspindp3.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lspindp3.x |
|- ( ph -> X e. V ) |
| 7 |
|
lspindp3.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 8 |
|
lspindp3.e |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> W e. LVec ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> X e. V ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> Y e. ( V \ { .0. } ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |
| 13 |
1 2 3 4 9 10 11 12
|
lspabs2 |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 14 |
13
|
ex |
|- ( ph -> ( ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 15 |
14
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) ) |
| 16 |
8 15
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) |