Step |
Hyp |
Ref |
Expression |
1 |
|
lspindp3.v |
|- V = ( Base ` W ) |
2 |
|
lspindp3.p |
|- .+ = ( +g ` W ) |
3 |
|
lspindp3.o |
|- .0. = ( 0g ` W ) |
4 |
|
lspindp3.n |
|- N = ( LSpan ` W ) |
5 |
|
lspindp3.w |
|- ( ph -> W e. LVec ) |
6 |
|
lspindp3.x |
|- ( ph -> X e. V ) |
7 |
|
lspindp3.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
8 |
|
lspindp3.e |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
9 |
5
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> W e. LVec ) |
10 |
6
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> X e. V ) |
11 |
7
|
adantr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> Y e. ( V \ { .0. } ) ) |
12 |
|
simpr |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |
13 |
1 2 3 4 9 10 11 12
|
lspabs2 |
|- ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
14 |
13
|
ex |
|- ( ph -> ( ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
15 |
14
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) ) |
16 |
8 15
|
mpd |
|- ( ph -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) |