Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspindp3.v | |- V = ( Base ` W ) |
|
lspindp3.p | |- .+ = ( +g ` W ) |
||
lspindp4.n | |- N = ( LSpan ` W ) |
||
lspindp4.w | |- ( ph -> W e. LMod ) |
||
lspindp4.x | |- ( ph -> X e. V ) |
||
lspindp4.y | |- ( ph -> Y e. V ) |
||
lspindp4.z | |- ( ph -> Z e. V ) |
||
lspindp4.e | |- ( ph -> -. Z e. ( N ` { X , Y } ) ) |
||
Assertion | lspindp4 | |- ( ph -> -. Z e. ( N ` { X , ( X .+ Y ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspindp3.v | |- V = ( Base ` W ) |
|
2 | lspindp3.p | |- .+ = ( +g ` W ) |
|
3 | lspindp4.n | |- N = ( LSpan ` W ) |
|
4 | lspindp4.w | |- ( ph -> W e. LMod ) |
|
5 | lspindp4.x | |- ( ph -> X e. V ) |
|
6 | lspindp4.y | |- ( ph -> Y e. V ) |
|
7 | lspindp4.z | |- ( ph -> Z e. V ) |
|
8 | lspindp4.e | |- ( ph -> -. Z e. ( N ` { X , Y } ) ) |
|
9 | 1 2 3 4 5 6 | lspprabs | |- ( ph -> ( N ` { X , ( X .+ Y ) } ) = ( N ` { X , Y } ) ) |
10 | 8 9 | neleqtrrd | |- ( ph -> -. Z e. ( N ` { X , ( X .+ Y ) } ) ) |