Metamath Proof Explorer


Theorem lspindp4

Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v
|- V = ( Base ` W )
lspindp3.p
|- .+ = ( +g ` W )
lspindp4.n
|- N = ( LSpan ` W )
lspindp4.w
|- ( ph -> W e. LMod )
lspindp4.x
|- ( ph -> X e. V )
lspindp4.y
|- ( ph -> Y e. V )
lspindp4.z
|- ( ph -> Z e. V )
lspindp4.e
|- ( ph -> -. Z e. ( N ` { X , Y } ) )
Assertion lspindp4
|- ( ph -> -. Z e. ( N ` { X , ( X .+ Y ) } ) )

Proof

Step Hyp Ref Expression
1 lspindp3.v
 |-  V = ( Base ` W )
2 lspindp3.p
 |-  .+ = ( +g ` W )
3 lspindp4.n
 |-  N = ( LSpan ` W )
4 lspindp4.w
 |-  ( ph -> W e. LMod )
5 lspindp4.x
 |-  ( ph -> X e. V )
6 lspindp4.y
 |-  ( ph -> Y e. V )
7 lspindp4.z
 |-  ( ph -> Z e. V )
8 lspindp4.e
 |-  ( ph -> -. Z e. ( N ` { X , Y } ) )
9 1 2 3 4 5 6 lspprabs
 |-  ( ph -> ( N ` { X , ( X .+ Y ) } ) = ( N ` { X , Y } ) )
10 8 9 neleqtrrd
 |-  ( ph -> -. Z e. ( N ` { X , ( X .+ Y ) } ) )